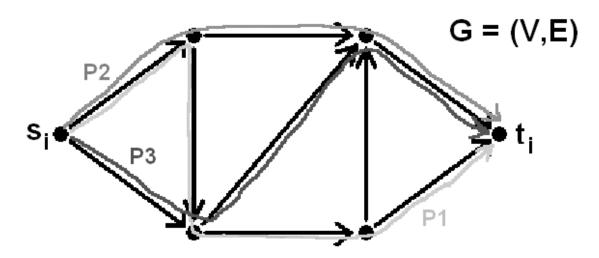
Worst Case Nash / Optimal Ratio

What we learned from convex optimization:

APPLICATION:

- Let G = (V, E), with a continuous and monotonic delay function, $d_e(x) \ge 0$, for each edge $e \in E$.
- Let s_i , t_i be source, sink pairs for i = 1, 2, ..., k and $P_i = \{\text{set of all paths from } s_i \text{ to } t_i\}$.
- Define flow $f_P \ge 0$ for $P \in U_i \mathbf{P}_i$ with the property that $\sum_{P \in P_i} f_P = 1$.

Now, the flow on edge e is $f(e) = \sum_{P, e \in P} f_P$. Also, delay on P is $d_P(f) = \sum_{e \in P} d_e(f(e))$.



The flow at Nash Equilibrium requires that $\forall P \in \mathbf{P}_i$, if $f_P > 0$ and $Q \in \mathbf{P}_i$, then

$$d_{\rm P}(f) \le d_{\rm Q}(f). \tag{A}$$

(The logic behind this is that no user on a path P wants to switch to any other path.)

THEOREM 7.1: Suppose the goal is to minimize $\sum_{e \in E} c_e(f(e))$, where c_e is convex and differentiable. (Note: the summation is separable.) Then, the flow *f* is optimal if and only if $\forall P \in \mathbf{P}_i$, if $f_P > 0$ and $Q \in \mathbf{P}_i$, then

$$\sum_{e \in P} c_e'(f(e)) \le \sum_{e \in O} c_e'(f(e)).$$
(B)

(Note: here c_e' is the derivative of c_e.)

COROLLARY 7.1a: Nash Equilibrium is the optimal flow and of course optimizes $\mathcal{O}(f)$, where $\mathcal{O}(f) = \sum_{e \in E} \sqrt{\int_{e \in E} d^{f(e)} d_e(x) dx}$. This follows by substituting

 $_{0}f^{(e)} d_{e}(x) dx$ for $c_{e}(f(e))$ in equation (B) and noting that the derivative of the integral, $d/dx (_{0}f^{(f(e))} d_{e}(x) dx) = d_{e}(f(e))$. The resulting equation is

$$\sum_{e \in P} d_e(f(e)) \leq \sum_{e \in Q} d_e(f(e)),$$

which is equivalent to $d_P(f) \le d_Q(f)$. Hence, by (A) our Nash Equilibrium flow satisfies the preconditions for Theorem 7.1.

COROLLARY 7.1b: The approximate Nash Equilibrium flow can be found in polynomial time.

Let us consider a new objective function, $\sum_{P \in P_i} f_P \cdot d_P(f_P) = \sum_{e \in E} f(e) \cdot d_e(f(e))$. Assume $x \cdot d_e(x)$ is convex for all edges (this is usually true for most $d_e(x)$ functions).

COROLLARY 7.1c: If $\mathbf{x} \cdot \mathbf{d}_{e}(\mathbf{x})$ is convex for all $e \in E$, then the optimal flow, f, is obtained if and only if $\forall \mathbf{P} \in \mathbf{P}_{i}$, if $f_{\mathbf{P}} > 0$ and $\mathbf{Q} \in \mathbf{P}_{i}$, then

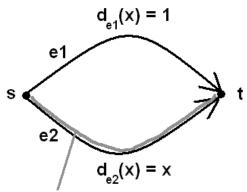
$$\sum_{e \in P} (d_e(f(e)) + f(e) \cdot d_e'(f(e))) \le \sum_{e \in O} (d_e(f(e)) + f(e) \cdot d_e'(f(e)))$$
(C)

- COROLLARY 7.1d: The approximate optimal flow (in an average happiness sense) can be computed if $x \cdot d_e(x)$ is convex.
- COROLLARY 7.1e: For a new delay function $d_e^*(x) = d_e(x) + x \cdot d_e'(x)$, the Nash Equilibrium flow is actually the optimal flow (in an average happiness sense) for the original routing problem. Therefore, a network administrator's strategy to achieve optimal flow could be to charge $x \cdot d_e'(x)$ as a tax/fee for using the network.

** Charging money can make people behave Nashfully. **

GOAL: Compare Nash flow with Optimal flow:

Example 1:



Nash is all on this edge

Nash: All flow is on lower edge with delay $d_{e2}(1) = 1$.

Optimal:
Upper edge:
$$d_{e1}*(x) = d_{e1}(x) + x \cdot d_{e1}'(x)$$

 $= 1 + x \cdot 0$
 $= 1$

Lower edge:
$$d_{e2}^{*}(x) = d_{e2}(x) + x \cdot d_{e2}(x)$$

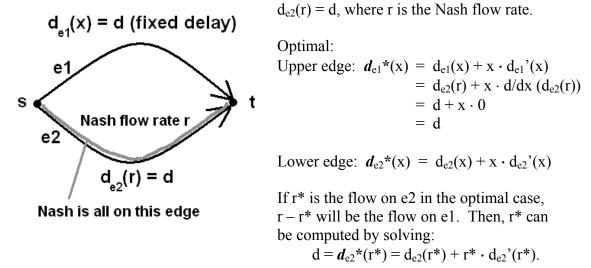
= $x + x \cdot 1$
= $2x$

Optimal occurs when delays are equal

 $(d_{e1}*(x) = d_{e2}*(x))$, so the flow will be split $\frac{1}{2}$ on the top edge and $\frac{1}{2}$ on the bottom edge.

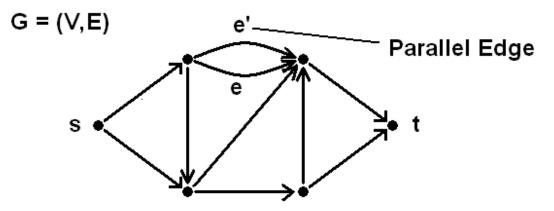
Nash: All flow is on lower edge with delay

Example 2:



THEOREM 7.2 (Roughgarden): The worst case of Nash / Optimal ratio for any class of delays, $x \cdot d_e(x)$ (convex and differentiable), is on a 2-edge, 2 node graph with one edge having a constant delay.

PROOF: Consider the graph G = (V, E) as shown.



Let f^N be the Nash flow on G. Consider G' = (V, E') created from G by adding a parallel copy to every edge $e \in E$ called e'. Let e' have fixed delay $d_{e'}(x) = d_e(f^N(e))$.

Facts:

- 1. f^{N} is still a Nash flow for G'.
- 2. The Optimal flow for G' may have improved over the Optimal flow for the original graph G.
- 3. We claim that the Optimal flow on G' is obtained from the Nash by dividing the flow between e and e' optimally as shown in Example 2.

Proof of 3: Assume f^* is the flow constructed in Claim 3 by dividing the flow $f^N(e)$ between the two parallel copies. Let $d_{e'}(x)$ to denote the (constant) delay of e', the new parallel copy of edge e. We want to claim that f^* is the optimal flow. Define the new delay function as $d_e^*(x) = d_e(x) + x \cdot d_e'(x)$. By definition of how we divide the flow between the two copies of an edge, e and e', we have the following:

$$d_{e}^{*}(f^{*}(e)) = d_{e}^{*}(f^{*}(e)) = d_{e}(f^{N}(e))$$

Therefore, f^* is the Nash flow subject to the delay function d_e^* (all flow on the shortest $s_i - t_i$ paths). This implies that f^* is the Optimal flow for G'.

Continuing with the proof of Theorem 7.2:

 $\frac{\text{Nash}}{\text{Opt}} (\text{on G}) \leq \frac{\text{cost of } f^{N}}{\text{cost of } f^{*}} = \frac{\sum_{e \in E} f^{N}(e) \cdot d_{e}(f^{N}(e))}{\sum_{e \in E^{\vee}} f^{*}(e) \cdot d_{e}(f^{*}(e))}$ $\leq \max_{e} \frac{f^{N}(e) \cdot d_{e}(f^{N}(e))}{f^{*}(e) \cdot d_{e}(f^{*}(e)) + f^{*}(e^{\vee}) \cdot d_{e^{\vee}}(f^{*}(e^{\vee}))}$

Notes: The first inequality follows from applying facts 1, 2, and 3 to G'. The final inequality follows from the math theorem: $\frac{a+b}{a'+b'} \le \max(\frac{a}{a}, \frac{b}{b})$.