SF2972: Game theory

The 2012 'Nobel prize in economics':
awarded to Alvin E. Roth and Lloyd S. Shapley for "the theory of stable allocations and the practice of market design"

Plan are variants of two algorithms:
(1) The top trading cycle algorithm
(2) The deferred acceptance algorithm

For each of the two algorithms, I will do the following:

- State the algorithm.
- State nice properties of outcomes generated by the algorithm.
- Solve an example using the algorithm.
- Describe application(s)
- Give you a homework exercise.

The top trading cycle (TTC) algorithm: statement

Input: Each of $n \in \mathbb{N}$ agents owns an indivisible good (a house) and has strict preferences over all houses.
Convention: agent i initially owns house h_{i}.
Question: Can the agents benefit from swapping houses?
TTC algorithm:
(1) Each agent i points to her most preferred house (possibly i 's own); each house points back to its owner.
(2) This creates a directed graph. In this graph, identify cycles.

- Finite: cycle exists.
- Strict preferences: each agent is in at most one cycle.
(3) Give each agent in a cycle the house she points at and remove her from the market with her assigned house.
(1) If unmatched agents/houses remain, iterate.

Agents' ranking from best (left)
to worst (right):
$\left(h_{3}, h_{2}, h_{4}, h_{1}\right)$
$\left(h_{4}, h_{1}, h_{2}, h_{3}\right)$
$\left(h_{1}, h_{4}, h_{3}, h_{2}\right)$
$\left(h_{3}, h_{2}, h_{1}, h_{4}\right)$

- Cycle: $\left(1, h_{3}, 3, h_{1}, 1\right)$
- So: 1 get h_{3} and 3 gets h_{1}. Remove them and iterate.

The top trading cycle (TTC) algorithm: nice properties

(1) The TTC assignment is such that no subset of owners can make all of its members better off by exchanging the houses they initially own in a different way.

- In technical lingo: the TTC outcome is a core allocation.
(2) The TTC assignment is the only such assignment.
- Unique core allocation.
(3) It is never advantageous to an agent to lie about preferences if the TTC algorithm is used.
- The TTC algorithm is strategy-proof.

Only agents 2 and 4 left with updated preferences:
$\begin{array}{ll}2: & \left(h_{4}, h_{2}\right) \\ 4: & \left(h_{2}, h_{4}\right)\end{array}$

- Cycle: $\left(2, h_{4}, 4, h_{2}, 2\right)$.
- So: 2 gets h_{4} and 4 gets h_{2}. Done!
- Final match:

$$
\left(1, h_{3}\right),\left(2, h_{4}\right),\left(3, h_{1}\right),\left(4, h_{2}\right)
$$

The top trading cycle (TTC) algorithm: application 1

- A. Abdulkadiroğlu and T. Sönmez, 2003. School Choice: A Mechanism Design Approach. American Economic Review 93, 729-747.
- How to assign children to schools subject to priorities for siblings and distance?
Input:
- Students submit strict preferences over schools
- Schools submit strict preferences over students based on priority criteria and (if necessary) a random number generator Modified TTC algorithm:
(1) Each remaining student points at her most preferred unfilled school; each unfilled school points at its most preferred remaining student.
(2) Cycles are identified and students in cycles are matched to the school they point at.
(3) Remove assigned students and full schools.
- If unmatched students remain, iterate.

The top trading cycle (TTC) algorithm: homework

[^0]exercise 6

The top trading cycle (TTC) algorithm: application 2

- A.E. Roth, T. Sönmez, M.U. Ünver, 2004. Kidney Exchange. Quarterly Journal of Economics 119, 457-488.
- A case with patient-donor pairs: a patient in need of a kidney and a donor (family, friend) who is willing to donate one.
- Complications arise due to incompatibility (blood/tissue) groups, etc.
- So look at trading cycles: patient 1 might get the kidney of donor 2 , if patient 1 gets the kidney of donor 1 , etc.
- D. Gale and L.S. Shapley, 1962, College Admissions and the Stability of Marriage. American Mathematical Monthly 69, 9-15.
- Only seven pages...
- ... and, yes, stability of marriage!

The deferred acceptance (DA) algorithm: marriage problem

- Men and women have strict preferences over partners of the opposite sex
- You may prefer staying single to marrying a certain partner
- A match is a set of pairs of the form $(m, w),(m, m)$, or
(w, w) such that each person has exactly one partner.
- Person i is unmatched if the match includes (i, i).
- i is acceptable to j if j prefers i to being unmatched.
- Given a proposed match, a pair (m, w) is blocking if both prefer each other to the person they're matched with.
- m prefers w to his match-partner
- w prefers m to her match-partner
- A match is unstable if someone has an unacceptable partner or if there is a blocking pair. Otherwise, it is stable.
- A match is man-optimal if it is stable and there is no other stable match that some man prefers. Woman-optimal analogously.

The deferred acceptance (DA) algorithm: statement

Input: A nonempty, finite set M of men and W of women. Each man (woman) ranks acceptable women (men) from best to worst. DA algorithm, men proposing:
(1) Each man proposes to the highest ranked woman on his list.
(2) Women hold at most one offer (her most preferred acceptable proposer), rejecting all others.
(0) Each rejected man removes the rejecting woman from his list.
(9) If there are no new rejections, stop. Otherwise, iterate.

- After stopping, implement proposals that have not been rejected.

Remarks:
(1) DA algorithm, women proposing: switch roles!
(2) Deferred acceptance: receiving side defers final acceptance of proposals until the very end.

The deferred acceptance (DA) algorithm: example

- For convenience $|M|=|W|=4$.
- All partners of opposite sex are acceptable.
- Ranking matrix:

	w_{1}	w_{2}	w_{3}	w_{4}
m_{1}	1,3	2,3	3,2	4,3
m_{2}	1,4	4,1	3,3	2,2
m_{3}	2,2	1,4	3,4	4,1
m_{4}	4,1	2,2	3,1	1,4

- Interpretation: entry $(1,3)$ in the first row and first column indicates that m_{1} ranks w_{1} first among the women and that w_{1} ranks m_{1} third among the men.

The deferred acceptance (DA) algorithm: example

	w_{1}	w_{2}	w_{3}	w_{4}
m_{1}	1,3	2,3	3,2	4,3
m_{2}	1,4	4,1	3,3	2,2
m_{3}	2,2	1,4	3,4	4,1
m_{4}	4,1	2,2	3,1	1,4

w_{1} is the only person to receive multiple proposals; she compares m_{1} (rank 3) with m_{2} (rank 4) and rejects m_{2}. Strike this entry from the matrix and iterate.

The deferred acceptance (DA) algorithm: example
The deferred acceptance (DA) algorithm: example

w_{1} is the only person to receive multiple proposals; she compares m_{1} (rank 3) with m_{3} (rank 2) and rejects m_{1}. Strike this entry from the matrix and iterate.

The deferred acceptance (DA) algorithm: example

w_{2} is the only person to receive multiple proposals; she compares m_{1} (rank 3) with m_{4} (rank 2) and rejects m_{1}. Strike this entry from the matrix and iterate.

The deferred acceptance (DA) algorithm: application

A variant of the marriage problem is the college admission problem: each student can be matched to at most one college, but a college can accept many students.
This can be mapped into the marriage problem:
(1) Students: one side of the marriage problem, e.g. M.
(2) Colleges: other side of the marriage problem, e.g. W. Split college c with quota n into n different women c_{1}, \ldots, c_{n}.
(3) Create artificial preferences by replacing college c in students' rankings by c_{1}, \ldots, c_{n}, in that order.

The deferred acceptance (DA) algorithm: example

No rejections; the algorithm stops with stable match

$$
\left(m_{1}, w_{3}\right),\left(m_{2}, w_{4}\right),\left(m_{3}, w_{1}\right),\left(m_{4}, w_{2}\right)
$$

The deferred acceptance (DA) algorithm: homework exercise 7

Consider the ranking matrix

	w_{1}	w_{2}
m_{1}	1,2	2,1
m_{2}	2,1	1,2

(a) Find a stable matching using the men-proposing DA algorithm.
(b) Find a stable matching using the women-proposing DA algorithm.
(c) Suppose that w_{1} lies about her preferences and says that she only finds m_{2} acceptable. What is the outcome of the men-proposing DA algorithm now? Verify that both women are better off than under (a): it may pay for the women to lie!

[^0]: Apply the TTC algorithm to the following case:
 $\left(h_{5}, h_{2}, h_{1}, h_{3}, h_{4}\right)$
 $\left(h_{5}, h_{4}, h_{3}, h_{1}, h_{2}\right)$
 $\left(h_{4}, h_{2}, h_{3}, h_{5}, h_{1}\right)$
 $\left(h_{2}, h_{1}, h_{5}, h_{3}, h_{4}\right)$
 $\left(h_{2}, h_{4}, h_{1}, h_{5}, h_{3}\right)$

