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Abstract

Existing object recognition models have been shown to
lack robustness in diverse geographical scenarios due to
domain shifts in design and context. Class representations
need to be adapted to more accurately reflect an object con-
cept under these shifts. In the absence of training data
from target geographies, we hypothesize that geographi-
cally diverse descriptive knowledge of categories can en-
hance robustness. For this purpose, we explore the feasibil-
ity of probing a large language model for geography-based
object knowledge, and we examine the effects of integrat-
ing knowledge into zero-shot and learnable soft prompt-
ing with CLIP. Within this exploration, we propose geog-
raphy knowledge regularization to ensure that soft prompts
trained on a source set of geographies generalize to an un-
seen target set. Accuracy gains over prompting baselines on
DollarStreet while training only on Europe data are up to
+2.8/1.2/1.6 on target data from Africa/Asia/Americas, and
+4.6 overall on the hardest classes. Competitive perfor-
mance is shown vs. few-shot target training, and analysis is
provided to direct future study of geographical robustness.

1. Introduction

The performance of object recognition models degrades
when tested in new geographies (e.g., cities, countries, con-
tinents) [7, 21, 33, 39, 43]. Numerous factors contribute to
the challenging problem of geographical domain shift, such
as cross-geography changes in object design/parts, materi-
als, and context. These changes in turn may be due to cul-
tural, climate, or economic differences around the world.
Recent work has shown standard adaptation techniques fail
when used for geographical domain shifts [21, 33], but there
has yet to be significant progress in the creation of tech-
niques that improve geographical robustness. Such progress
is necessary to ensure equitable use of AI in the future.

Figure 1. Descriptive knowledge can address concept shifts
across geographies. Observe the wide range of object designs and
contexts in the DollarStreet [11] category tools around the world.
Our work’s premise is that textual representations for classes in
vision-language models can be enhanced to better suit diverse ob-
ject representations across geographies. Map made with [16].

Overall, models need representations that adequately
capture a category’s various forms around the world. A
natural solution is to collect training data of objects from
different regions. However, this approach is expensive,
takes significant effort, and is difficult for regions with lim-
ited Internet access. Fortunately, geographical shifts have a
unique property compared to other common domain shifts
(e.g. ones due to artistic style or weather changes)—they
can be addressed with descriptive knowledge about con-
cept changes. In other words, it is possible to describe the
features of an object in a region and use this information
to adapt a model’s default representation. For instance, as
shown in Fig. 1, for rural areas in Papua New Guinea, tools
can be described as being used for “cooking, hunting, and
fishing”, and for rural areas in Malawi, tools may often be
“made of metal and wood, for farming”. Models should ac-
count for diverse presentations and contexts of a category
and not be limited to biased presentations (e.g. if the model
learns tools as just being “metallic with logos”).

We examine the effects of probing geo-diverse knowl-
edge in two ways. First, we analyze whether a vision-



language model (VLM, i.e. CLIP [36]) has encoded cat-
egories in a geo-specific manner, such that adding a coun-
try’s name to a prompt (e.g. “A photo of a house in China”)
elicits knowledge that improves recognition. Second, we
probe a large language model (LLM, i.e. GPT-3 davinci-
003) for geography-specific knowledge to obtain visual fea-
ture descriptors for an object in different locations. We an-
alyze results in zero-shot inference on geographically and
socioeconomically diverse data (DollarStreet [11]), finding
the combination of knowledge to often be complementary.

We further consider a practical scenario where CLIP is
optimized with soft prompting, using only a “source” ge-
ography with easy-to-access data (e.g. Europe), while the
model is applied downstream on “target” data from other
parts of the world (e.g. Africa, Asia, Americas). We propose
geography knowledge regularization, which uses knowl-
edge ensembled over countries to enable soft prompts to
achieve geographically generalizable class representations.
We test our method on the recent DollarStreet and GeoNet
[21] datasets. Our regularization boosts performance over
baseline soft prompting methods, and has benefits with
respect to few-shot target-specific training (a 16-shot-per-
class regularized model without any target data outperforms
a 12-shot-per-class target-trained model on DollarStreet).

Our method is the first to effectively address geo shifts in
object recognition. It outperforms zero-shot CLIP (assumed
to have some robustness) by 10.3% on Africa, CoOp [52] by
3.3%, and the best baseline by 4.6% on the hardest classes.

To summarize, we answer the following questions: (1)
Does adding geographical context (i.e. country names)
to CLIP prompts improve recognition across geographies?
(2) Can an LLM provide useful geographical descriptive
knowledge to improve recognition? (3) How can we opti-
mize soft prompts for CLIP using an accessible data source
with consideration of target geographies not represented in
the training set? (4) Where can soft prompts enhanced with
geographical knowledge provide the most benefits?

2. Related Work
Geographical domain shifts occur when the target set-
ting is in a different geography (e.g. continent, country,
city) than where the source data was acquired. Shifts in-
volve changes in object design (e.g. differences in house
architecture) and context (i.e. background/co-occurring ob-
jects vary). Datasets tailored to cross-country/continent ob-
ject recognition have recently been proposed, e.g. Dol-
larStreet [11], GeoNet [21], GeoDE [37], GeoYFCC [9],
and OpenImages-Extended [5]. Interestingly, [21, 33]
demonstrate that traditional methods in unsupervised do-
main adaptation [10, 19, 20, 27, 28, 38, 44, 45, 50] which
seek to bridge gaps based on visual features alone, do not
effectively address geographical domain shift. They achieve
negligible gains (e.g. 0.14 for [10] in [33]) or often drops

in performance (e.g. all methods tested in [21]), compared
to just using the source model. Attempts to specifically ad-
dress geographical robustness are limited: [43] corrects for
differences in the sizes of cars, [9] proposes a discriminative
domain embedding from target data, and GiVL [48] pre-
trains with knowledge from Wikipedia. In contrast, our de-
scriptive knowledge regularization works for different cate-
gories (not just cars); we do not require target domain data
to achieve gains cross-geography; we explore the strong ca-
pabilities of LLMs to gather relevant knowledge; and we
propose lightweight adaptation through soft prompting (un-
like GiVL’s expensive pretraining).

Vision-language (VL) models [17, 25, 26, 36, 49] excel on
a variety of tasks. CLIP [36] shows impressive zero-shot
object recognition across different settings. Yet its perfor-
mance given geographical shift is less apparent. GeoNet
[21] only shows finetuned performance, which is expensive
given CLIP’s large scale. GeoDE [37] only shows zero-shot
inference with CLIP’s default prompts. Neither work eval-
uates descriptive knowledge or soft prompting.

Learning soft textual prompts. Several recent works to
adapt CLIP have focused on parameter and data efficiency
using linear probing [36] and prompting [18, 23, 52]. Soft
textual prompting (e.g. CoOp [52]) is notable as it optimizes
class text embeddings (without manual tuning), which we
hypothesize is critical to adequately adapt for geographical
robustness. As CoOp overfits on base (seen) classes, Co-
CoOp [51] proposes to condition prompts on the image for
better generalizability. KgCoOp [47] alternatively guides
learned prompt embeddings towards CLIP’s manual prompt
embeddings through a distance constraint to avoid degrada-
tion on unseen classes. Our approach also uses a distance
constraint, but it differs from [47] with the purpose of regu-
larizing learned prompt representations for cross-geography
generalization instead of the base-to-new-class setting. We
also show novel benefits of regularization when used with
an ensemble of CLIP’s internal geographical knowledge
and external geographical descriptive knowledge. Our ap-
proach notably outperforms each of CoOp, CoCoOp, and
KgCoOp by at least +2.8 accuracy on target countries in
Africa in DollarStreet. External knowledge aids unseen
classes in KAPT [22], but not with respect to geographical
knowledge. Prompt tuning for adaptation has been tested in
[12, 40], but not with descriptive knowledge.

Knowledge probed from large language models like
[4, 6, 31, 32] has been used for visual reasoning [46],
embodied agent planning [15, 41], and to generate addi-
tional context for VLM class prompts in object recognition
[30, 34]. We uniquely probe LLMs for distinguishable vi-
sual descriptions for the same object class across different
geographical regions. We are also the first to incorporate
geographical knowledge from LLMs into soft prompting.



Figure 2. Geography knowledge regularization. To ensure robustness in soft prompt learning, we (1) incorporate knowledge internal to
CLIP and externally obtained from an LLM. (2) This descriptive knowledge regularizes class representations when training on a specific
source geography (e.g. Europe), thus (3) increasing robustness when generalizing to target geographies (e.g. Vietnam).

3. Approach

We investigate geographical shift in object recognition with
VLMs. We posit that the manner in which classes are de-
scribed is critical due to cross-geography shifts in design
and context. We also hypothesize that CLIP’s default class
representations elicited through “a photo of a/an <object>”
prompts may not adequately represent classes around the
world. Instead, they may be more aligned to high-resource
geographies due to Internet-based training data. Optimiz-
ing representations (with soft prompts) on a specific geog-
raphy (e.g. Europe) may exacerbate a lack of robustness.
Our main idea (Fig. 2) is to incorporate object-related ge-
ographical knowledge into prompting to ensure model ro-
bustness in different regions. We outline our mechanism to
obtain geography-specific context by probing CLIP’s inter-
nal knowledge and an external LLM’s descriptive knowl-
edge. We further propose geography knowledge regulariza-
tion to ensure soft prompts do not overfit when training data
is limited to certain geographies.
Preliminaries. We consider object recognition on a dataset
S containing a class set C (size Nc) over a set of geographies
G. We consider a geography g to be either a country or
continent. Our VLM is CLIP [36], with an image encoder f
and language encoder h. We incorporate knowledge of each
geography g into prompting using (1) zero-shot inference or
(2) soft textual prompting. Prompts are defined as t (each
is a set of tokens), and class embeddings w are calculated
as h(t). We refer to CLIP’s default prompt “a photo of a/an
<object>” for a class c as tdefault

c .

3.1. Geographical Knowledge Probing

Probing CLIP’s internal geographical knowledge. Our
first strategy of investigation is to augment CLIP’s manual
prompts to include country names, as we surmise that some

of the resulting class representations may be better aligned
to how categories present in different regions. [3] inspires
this hypothesis, showing that adding country names to im-
age generation prompts can achieve gains in geographical
representativeness. However, it is an open question whether
adding country names in prompts improves recognition.
We define the setting CountryInPrompt, using the prompt
tCountryInPrompt
c with template “a photo of a/an <object> in
<country>”, e.g. “a photo of a stove in Burundi.”
Probing external LLM geographical knowledge. As
CLIP may not have sufficient knowledge of objects in some
regions, we consider further augmenting prompts with ex-
ternal knowledge. Motivated by probing LLMs for gen-
eral attribute-based object descriptions [30, 34] (e.g. a tiger
with “stripes and sharp teeth”), we probe GPT-3 (davinci-
003) for geography-specific descriptions of object styles,
contexts, and materials.1 We reason that since LLMs are
trained on large information sources (e.g. CommonCrawl
[1], WebText [35], Wikipedia [2]), they may have knowl-
edge about how an object presents in a region due to cli-
mate, economics, and/or cultural factors. For instance, roofs
may sometimes be “thatched” in tropical and temperate cli-
mates, and cutlery may sometimes be made of “bamboo” in
areas with bamboo forests. Our goal is unique vs. [30, 34]
in that we explore descriptive knowledge differences for the
same class to address domain shifts across regions.
Acquiring knowledge. We follow [30], but instead of gath-
ering one set of feature descriptors D(c) for each c, we col-
lect sets per country. For each class c and geography g, we
prompt the LLM to generate descriptor lists Dg(c), using
a template consisting of an example question, answer, and
format. We use 1-shot prompting to show how to capture
geographically representative object designs and contexts.

1We found ChatGPT to perform worse than GPT-3, also found in [34].



Our prompt exemplifies this below, using the descriptors for
Japanese ofuro (お風呂, bathtub):

Q: What are useful features for distinguishing a
bathtub in a photo that I took in Japan?
A: There are several useful visual features to tell there
is a bathtub in a photo that I took in Japan:
- short in length and deep
- square shape
- wooden, plastic, or steel material
- white or brown color
- benches on side
- next to shower
Q: What are useful features for distinguishing
<category> in a photo that I took in <country>?
A: There are several useful visual features to tell there
is/are <category> in a photo that I took in <country>:

Using knowledge. To convert LLM outputs to CLIP
prompts, each descriptor d in Dg(c) serves in a prompt
tc,d. The format of tc,d is “a photo of a/an <object> which
(is/has/etc.) <descriptor>”. The setting where geography-
specific LLM descriptors are used in prompting is referred
to as CountryLLM (prompts tCountryLLM

c,d ), while [30] is
GeneralLLM (prompts tGeneralLLM

c,d ). To perform zero-shot
inference on an image I , each class score s(c, I) is com-
puted using the average of CLIP logits ϕ(I, d) over each d
in the set D. For GeneralLLM, the score is calculated as:

s(c, I) =
1

|D(c)|
∑

d∈D(c)

ϕ(I, d) (1)

For CountryLLM, we use the geo-specific set:

s(c, I, g) =
1

|Dg(c)|
∑

d∈Dg(c)

ϕ(I, d) (2)

The argmax of s with respect to c is taken as the prediction.
Due to averaging over descriptor scores, not every descrip-
tor needs to strongly activate in a correct prediction. The
model therefore can account for diverse features of objects
within a geography. These descriptors effectively serve as
complements to CLIP’s default knowledge of class names.
Combining knowledge. Our third method of exploration,
CountryInPrompt+LLM, combines both CLIP’s internal
knowledge and LLM external knowledge. The prompt tem-
plate tCountryInPrompt+LLM

c,d is “a photo of a/an <object> in
<country> which (is/has/etc.) <descriptor>”.

3.2. Regularizing Soft Prompts via Geo Knowledge

Adaptation scenario. In practice, one may want to fur-
ther optimize a VLM for a downstream task. To update
a model effectively, one promising strategy is soft textual
prompting. It is parameter-efficient [52] and avoids feature
distortion unlike finetuning [24]. Its mechanism is to learn

context parameters that directly change the class text em-
beddings used in inference. We posit that learning context
on a dataset with limited diversity (e.g. just Europe) may
tailor these class representations to the region and overfit.
To investigate cross-geography generalization when using
soft prompting, we pose a domain generalization scenario
where we aim to learn only from a high-resource source set
of countries and generalize to a target set of countries at in-
ference time. A method that performs well in this setting
could provide a viable alternative to few-shot target training
when acquiring target data for training is not feasible.
Soft prompts. Our idea is to learn soft prompts while con-
straining the class text embeddings to be close to geograph-
ical knowledge of objects outside of source geographies. In
this way, we hope to learn class representations that are
more applicable to the rest of the world. Building from
CoOp [52], we assume there is a text prompt tc for each
class c. All prompts share M context vectors (each denoted
[V]m), which are the same size as the word embeddings (i.e.
512-D) and precede a class name token [CLASSc]:

tc = [V]1[V]2...[V]M [CLASSc] (3)

The respective class text embedding wc is produced as
h(tc), forwarding the prompt through the text encoder.
Learning proceeds by minimization of cross-entropy, for
image k with features fk, using ground-truth source labels
yk,c and temperature τ :

Lce = −
Nc∑
c=1

yk,c log
exp(cos (wc,fk)/τ)∑Nc

j=1 exp(cos (wj ,fk)/τ)
(4)

Geography knowledge regularization (gkr). We mini-
mize the cosine distance of normalized class embedding wc

and overall target class knowledge ktgt
c , over all c:

Lgkr = 1− 1

Nc

Nc∑
c=1

cos(wc,k
tgt
c ) (5)

Geo knowledge ensemble. To define ktgt
c , we identify that

a model may be deployed in various locations. Therefore,
we define a target geography set Gt, which can practically
be thought of as the countries that a model may be deployed
in that are not in the training set D (e.g. Africa, Asia, Amer-
icas in Gt if only Europe in D). Then for each geography g
in Gt, we define the corresponding class knowledge kg

c as:

kg
c =

1

|Dg(c)|
∑

d∈Dg(c)

wCountryInPrompt+LLM
c,d (6)

This is defined analogously for CountryInPrompt and
CountryLLM. The final regularization target ktgt

c for class
c aggregates the set’s geographical knowledge:

ktgt
c =

1

|Gt|
∑
g∈Gt

kg
c (7)



While the loss formulation includes cosine distance like
KgCoOp [47], it serves a different purpose: we regu-
larize for cross-geography domain generalization, while
KgCoOp regularizes for base-class-to-new-class inference.
Our method outperforms KgCoOp in cross-geography gen-
eralization due to its use of geo-specific knowledge.
Overall loss. The final loss L for learning soft prompts,
where λ controls the strength of regularization, is:

L = Lce + λLgkr (8)

4. Experimental Setup
Datasets. We use DollarStreet [11], which has 38,479
images of household objects across regions (Africa,
South/Central/North America, Asia, Europe) and incomes.
The classes may represent abstract concepts (e.g. most loved
toys), so we narrow focus to 95 object classes. We merge
especially close categories (light sources by bed/in living
room) and ignore multi-label examples, resulting in 23,114
total images. For zero-shot inference, the entire set is used.
For training, the source is Europe, and the target is Ameri-
cas, Asia, and Africa. 20% of source data, stratified based
on class proportions, is heldout for testing; target evalua-
tion is on all data from target continents. To set up ktgt

c ,
the 49 target countries in DollarStreet make up Gt. We also
use the GeoImNet benchmark of GeoNet [21], comprised of
171,692 images across 600 objects from the USA (source)
and 78,358 images across the same number in Asia (target).
We use existing train-test splits for soft prompt training. For
GeoNet, given the relatively large number of categories and
inference costs of davinci-003, ktgt

c and Gt use the top 10
most frequent countries in the GeoNet set.
Baselines. We evaluate geography knowledge regulariza-
tion vs. CoOp [52], CoCoOp [51] and KgCoOp [47]. For
zero-shot inference, we evaluate CLIP with default prompts
and the classification via description method of [30].
Metrics. We report balanced accuracy, which is the average
of per-class recall scores. We use this metric to account for
class imbalance in both DollarStreet and GeoNet. For zero-
shot inference, we also show top-3 accuracy as some similar
categories exist (e.g. cooking utensils, cutlery).
Experimental details. For all soft prompting experiments,
models are trained with 16 shots, context length M = 4,
and for 100 epochs, unless otherwise stated. The class token
position follows the soft prompts, and class-shared context
is used. Our method uses a batch size of 128 (same as Kg-
CoOp), while the batch sizes for CoOp and CoCoOp follow
[47] (i.e. 32, and 1 for CoCoOp due to memory limita-
tions). The encoders used for training include ViT-B/16 [8]
and ResNet-50 (RN50) [14] as reported in [47]. Both our
method and KgCoOp use a regularization weight λ. We set
λ = 4 for DollarStreet, and compare to KgCoOp at λ = 4

(which performs better than KgCoOp’s default λ = 8). For
GeoNet, we use λ = 8. Training is performed on 1 NVIDIA
Quadro RTX A5000 GPU with 24 GB of memory. All re-
ported soft prompt results are averages over 3 runs. For
experiments in the zero-shot setting, results are shown over
ViT-B/16, ViT-B/32, and RN50 encoders. LLM descriptors
for all experiments are generated from the davinci-003 ver-
sion of GPT-3, with max tokens 100 and temperature 0.7.

5. Results

5.1. Zero-shot CLIP Inference with Geo Knowledge

We gauge the effectiveness of three zero-shot strategies: (1)
CountryInPrompt (including countries in prompts to probe
CLIP’s knowledge), (2) CountryLLM (gathering descrip-
tive knowledge of objects with davinci-003), and (3) Coun-
tryInPrompt+LLM (using country names and LLM knowl-
edge). We compare to [30] (GeneralLLM) and CLIP with
manual prompts (i.e. “a photo of a/an <object>”). Results
on DollarStreet are shown in Table 1.
Including country names in prompts can improve ob-
ject recognition, especially in Africa and Asia. This ob-
servation is supported by gains for CountryInPrompt vs.
Zero-Shot CLIP, especially in Africa and Asia (up to +5.4
and +2.6 top-1 gains for RN50, resp.). Such differences
may occur as country-specific context can align represen-
tations closer to these regions, while default prompts do
not adequately capture objects around the world (esp. from
non-Western regions). In Americas/Europe, adding country
names leads to gains with RN50, but slight drops with ViT-
B/16 and ViT-B/32. We reason that CLIP’s default prompts
may be already well-aligned to countries in these regions
for those encoders due to overrepresentation in training.
Prompting with country-specific descriptive knowledge
from LLMs outperforms general object knowledge. We
observe this from CountryLLM’s larger gains over default
CLIP than GeneralLLM’s for almost all encoders, regions,
and metrics. The largest top-1 difference is with ViT-
B/32 (in Total, 52.6% for CountryLLM vs. 51.4% for
GeneralLLM). In top-3 accuracy, the differences for Coun-
tryLLM/GeneralLLM in Total are 74.6/73.0 for ViT-B/32,
78.8/77.9 for ViT-B/16, 70.0/68.6 for RN50. These sug-
gest that default non-country-specific knowledge is less ad-
equate for various countries. The gains of CountryLLM vs.
Zero-Shot CLIP are generally largest on Africa and Asia,
as countries in these regions may have greater shifts vs.
the default prompts, but CountryLLM also performs well
on Europe. LLM description in general is less effective in
Americas, though Americas has a large proportion of USA
images, for which default CLIP may be well-aligned.
There are complementary effects when using CLIP’s in-
ternal and external LLM geo knowledge. This observa-
tion is supported by CountryInPrompt+LLM, the combina-



Top-1 Accuracy Top-3 Accuracy
Encoder Prompting Method Europe Africa Asia Americas Total Europe Africa Asia Americas Total

Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆

ViT-B/32 Zero-Shot CLIP [36] 59.1 - 43.7 - 50.8 - 55.3 - 51.7 - 81.1 - 64.8 - 72.3 - 77.4 - 73.7 -
GeneralLLM [30] 57.3 -1.8 44.3 +0.6 50.9 +0.1 54.6 -0.7 51.4 -0.3 78.8 -2.3 64.5 -0.3 72.1 -0.2 75.7 -1.7 73.0 -0.7
CountryInPrompt 57.5 -1.6 45.2 +1.5 51.9 +1.1 55.0 -0.3 52.1 +0.4 80.2 -0.9 65.5 +0.7 73.3 +1.0 76.9 -0.5 73.9 +0.2

CountryLLM 59.4 +0.3 45.2 +1.5 52.1 +1.3 55.3 0.0 52.6 +0.9 80.9 -0.2 66.4 +1.6 73.6 +1.3 77.4 0.0 74.6 +0.9
CountryInPrompt+LLM 60.8 +1.7 45.3 +1.6 52.2 +1.4 55.0 -0.3 52.8 +1.1 81.5 +0.4 67.4 +2.6 73.6 +1.3 76.7 -0.7 74.7 +1.0

ViT-B/16 Zero-Shot CLIP [36] 64.3 - 46.9 - 53.9 - 60.1 - 55.5 - 84.3 - 69.3 - 75.9 - 81.1 - 77.2 -
GeneralLLM [30] 64.2 -0.1 48.8 +1.9 56.0 +2.1 58.5 -1.6 56.8 +1.3 83.9 -0.4 71.1 +1.8 76.3 +0.4 80.4 -0.7 77.9 +0.7
CountryInPrompt 63.9 -0.4 49.6 +2.7 55.7 +1.8 59.3 -0.8 56.6 +1.1 84.0 -0.3 71.3 +2.0 76.5 +0.6 80.0 -1.1 77.7 +0.5

CountryLLM 65.2 +0.9 49.6 +2.7 55.6 +1.7 59.7 -0.4 57.0 +1.5 84.3 0.0 71.8 +2.5 77.5 +1.6 81.5 +0.4 78.8 +1.6
CountryInPrompt+LLM 65.5 +1.2 50.8 +3.9 56.0 +2.1 59.7 -0.4 57.4 +1.9 85.5 +1.2 72.5 +3.2 77.0 +1.1 80.9 -0.2 78.7 +1.5

RN50 Zero-Shot CLIP [36] 53.0 - 38.0 - 44.4 - 49.8 - 45.7 - 76.5 - 60.2 - 66.4 - 72.7 - 68.1 -
GeneralLLM [30] 55.5 +2.5 40.9 +2.9 46.9 +2.5 50.3 +0.5 47.9 +2.2 76.0 -0.5 61.2 +1.0 67.7 +1.3 71.1 -1.6 68.6 +0.5
CountryInPrompt 54.5 +1.5 43.4 +5.4 47.0 +2.6 50.8 +1.0 48.4 +2.7 76.0 -0.5 64.0 +3.8 68.7 +2.3 72.7 0.0 70.0 +1.9

CountryLLM 56.2 +3.2 41.1 +3.1 47.3 +2.9 50.4 +0.6 48.3 +2.6 77.2 +0.7 62.5 +2.3 68.8 +2.4 72.4 -0.3 70.0 +1.9
CountryInPrompt+LLM 56.4 +3.4 43.0 +5.0 48.0 +3.6 50.9 +1.1 49.1 +3.4 76.7 +0.2 63.1 +2.9 68.3 +1.9 71.1 -1.6 69.4 +1.3

Table 1. Zero-shot CLIP inference with descriptive knowledge prompts, top-1/3 balanced accuracy (Acc) on DollarStreet. Strategies
to capture CLIP’s internal country knowledge (CountryInPrompt), external LLM country knowledge (CountryLLM), and their combination
(CountryInPrompt+LLM), often improve vs. the zero-shot CLIP baseline (prompt “a photo of a/an <object>”), especially on Africa and
Asia; gains in green, drops in red. CountryLLM notably outperforms the GeneralLLM [30] baseline.

Source Target
Encoder Prompting Method Europe Africa Asia Americas Total

Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆

ViT-B/16 CoOp [52] 72.2 - 53.9 - 61.5 - 68.6 - 61.7 -
CoCoOp [51] 73.2 - 54.3 - 61.2 - 68.3 - 61.4 -
KgCoOp [47] 73.1 - 54.4 - 62.6 - 68.7 - 62.4 -

CountryInPrompt Reg 71.8 -1.4 56.8 +2.4 63.0 +0.4 69.8 +1.1 63.5 +1.1
CountryLLM Reg 73.2 0.0 55.6 +1.2 63.0 +0.4 70.0 +1.3 63.2 +0.8

CountryInPrompt+LLM Reg 73.6 +0.4 57.2 +2.8 63.8 +1.2 70.3 +1.6 64.0 +1.6
RN50 CoOp [52] 64.6 - 45.2 - 51.6 - 59.5 - 52.2 -

CoCoOp [51] 62.9 - 44.5 - 51.0 - 58.3 - 51.4 -
KgCoOp [47] 63.5 - 46.3 - 53.9 - 60.5 - 53.9 -

CountryInPrompt Reg 63.5 -1.1 48.0 +1.7 53.9 0.0 60.3 -0.2 54.3 +0.4
CountryLLM Reg 64.5 -0.1 47.4 +1.1 54.2 +0.3 59.9 -0.6 54.3 +0.4

CountryInPrompt+LLM Reg 65.5 +0.9 48.1 +1.8 54.5 +0.6 60.4 -0.1 54.8 +0.9

Table 2. Regularizing soft prompts with geographical knowledge, top-1 bal. acc. on DollarStreet. We emphasize that our regulariza-
tion aims to improve target performance, rather than source (gray, italicized). Gains/drops are shown vs. the best of soft prompt baselines
(shaded). CountryInPrompt+LLM Reg achieves notable gains in target, especially on Africa. Methods use 16 shots per class.

tion of CountryInPrompt and CountryLLM, achieving the
best Total top-1 performance for every encoder. The Total
gains vs. default CLIP are as large as +3.4 (RN50). While
CLIP has internal knowledge of country-specific categories,
it may be incomplete and imprecise due to limited repre-
sentation in the image-text training corpus. Adding LLM
knowledge, trained on a purely textual corpus, may address
some gaps. CountryInPrompt+LLM is notably the top set-
ting in 3/4 regions for each encoder in top-1 accuracy.

5.2. Soft Prompting

We next evaluate geography knowledge regularization
(Sec. 3.2), our method to improve target performance by
ensuring that soft prompts do not overfit class text represen-
tations to a source dataset with limited geographical rep-

resentativeness (e.g. only data from Europe). We compare
regularization with ensembles of CountryInPrompt, Coun-
tryLLM, and CountryInPrompt+LLM prompts vs. state-of-
the-art soft prompting methods in Tables 2/3.
Regularizing soft prompts with target geographical
knowledge reduces overfitting to source geographies.
Our method effectively improves the ability of CLIP, with
prompts trained only on images from Europe, to general-
ize to target countries. This observation is supported by
Total Target gains for CountryInPrompt, CountryLLM, and
CountryInPrompt+LLM Reg on DollarStreet (+1.1/0.8/1.6
over the best soft prompt baseline for ViT-B/16). Im-
provements are notable in Africa: CountryInPrompt+LLM
achieves +2.8 for ViT-B/16 and +1.8 for RN50. The effec-
tiveness extends to GeoNet in Table 3: target gains are +1.3



Source Target
Encoder Method USA Asia

Acc ∆ Acc ∆

ViT-B/16 CoOp [52] 58.7 - 51.2 -
CoCoOp [51] 57.7 - 52.6 -
KgCoOp [47] 58.2 - 52.6 -

CIP Reg 57.5 -1.2 53.5 +0.9
LLM Reg 58.5 -0.2 53.1 +0.5

CIP+LLM Reg 57.6 -1.1 53.9 +1.3

RN50 CoOp [52] 51.4 - 45.6 -
CoCoOp [51] 51.1 - 46.3 -
KgCoOp [47] 51.8 - 46.9 -

CIPReg 50.6 -1.2 47.6 +0.7
LLMReg 51.8 0.0 47.4 +0.5

CIP+LLMReg 51.1 -0.7 48.3 +1.4

Table 3. Regularizing soft prompts with geographical knowl-
edge, top-1 bal. accuracy on GeoNet. The regularization method
accomplishes our goal to increase target performance in GeoNet’s
USA-to-Asia transfer setting. CIP = CountryInPrompt, LLM =
CountryLLM, CIP+LLM = CountryInPrompt+LLM.

Threshold t (# Classes)
Method <40% <60% <80% ≤100%

(13) ∆ (45) ∆ (77) ∆ (95) ∆

CoOp [52] 31.2 - 45.6 - 55.6 - 61.7 -
CoCoOp [51] 32.8 +1.6 45.4 -0.2 55.2 -0.4 61.4 -0.3
KgCoOp [47] 35.3 +4.1 47.9 +2.3 56.7 +1.1 62.4 +0.7

CIPReg 37.5 +6.3 48.9 +3.3 57.8 +2.2 63.5 +1.8
LLMReg 36.8 +5.6 48.1 +2.5 57.2 +1.6 63.2 +1.5

CIP+LLMReg 39.9 +8.7 49.5 +3.9 58.2 +2.6 64.0 +2.3

Table 4. Performance on DollarStreet classes with less than t%
recall in CoOp, with ViT-B/16. Gains w.r.t. CoOp of our ge-
ography knowledge regularization are especially large for CoOp’s
difficult classes (+8.7 in <40%), compared to KgCoOp’s (+4.1 in
<40%, i.e. a 4.6 difference from ours). CIP = CountryInPrompt,
LLM = CountryLLM, CIP+LLM = CountryInPrompt+LLM.

for ViT-B/16 and +1.4 for RN50. The combined strategy
works best on target, showing the value of incorporating
descriptive knowledge. Since regularization prevents over-
fitting and potentially optimal source performance, we natu-
rally observe source drops for CountryInPrompt and Coun-
tryLLM in Tables 2/3. However, CountryInPrompt+LLM
in Table 2 even offers source gains. It is also notable that
there are small drops in Americas for RN50, but upon in-
spection, countries in North America overall have a -0.9
drop, while ones in Central/South America have a +0.8
gain. These results concur with our hypothesis that CLIP is
already aligned to countries like the USA. More is in supp.,
along with experiments varying the source and ensemble.
Regularization helps significantly on difficult classes. As
certain objects may be especially sensitive to geographi-
cal domain shift, we break down classwise performance on
DollarStreet in Table 4, using a stratification of class diffi-
culty based on default soft prompting performance (CoOp).
The CountryInPrompt+LLM strategy achieves significant

Figure 3. Geography knowledge-regularized soft prompts
trained on source data (ours, green line) vs. few-shot soft
prompts trained on target data (blue curve). (a) Src=Europe,
Tgt=Africa,Asia,Amer.; (b) Src=USA,Tgt=Asia. Our 16-shot
model trained on only source data (green) outperforms a model
with prompts trained on 12 or 4 shots per class of target data (on
DollarStreet&GeoNet, resp.), which is 1140&2400 images total.

gains on the classes most difficult with respect to the CoOp
baseline. In particular, gains of +8.7% in balanced accu-
racy are achieved for classes with <40% baseline recall,
while the highest achieved by KgCoOp is 4.1%. Exam-
ple classes in this subset are snacks, clothes, and makeup.
The DollarStreet classes with greatest improvement, inde-
pendent of original CoOp accuracy are: piercings, clothes,
homes, medication, and refrigerators (all at least +14% over
CoOp). In GeoNet, dome, goby (fish), eland (antelope), and
gloriosa (flower) have >20 samples and >30% improve-
ment. A total of 64/95 classes in DollarStreet and 209/344
in GeoNet improve vs. CoOp, showing broad coverage.
Regularized source-only prompts outperform few-shot
target-trained prompts. Given that soft prompts can show
strong performance in few-shot settings, a potential alter-
native to regularizing soft prompts on source data is to di-
rectly acquire a few examples of target data for training. We
evaluate this setting by splitting target data into train/test,
and training CoOp at varying # of shots of target data for
GeoNet and DollarStreet, shown in Fig. 3. Notably, training
on 16 shots per class of source data with our regularization
method outperforms using 12 & 4 shots per class of target
data on DollarStreet & GeoNet. This is a vast amount of
target data overall (e.g. 12 shots x 95 classes = 1140 target
samples in DollarStreet, 4 shots x 600 classes = 2400 sam-
ples in GeoNet). The baseline CoOp trained on 16 shots of
source data only outperforms an 8-shot/2-shot target-trained
CoOp model (DollarStreet/GeoNet). Our strategy is thus
more compelling in the absence of a lot of target data.
Performance by income. DollarStreet provides esti-
mated monthly income of the household in which an im-
age was captured. We evaluate with the delineation of
low, medium, and high-income buckets from [13]. Com-
pared to CoOp/KgCoOp, CountryInPrompt+LLM gains are
+2.5/+3.4 in low, +2.4/+1.5 in medium, and +2.1/+0.7 in
high. Thus our method especially improves in low-income
areas, though it helps across levels. The table is in supp.



Statistic CIP CountryLLM CIP+LLM
GDP Per Capita (US $) 0.219 0.063 0.217

Human Devel. Index (HDI) 0.439 0.385 0.451
Land Area (km2) -0.072 0.050* -0.046*

Population (#) -0.131 0.077 -0.123
Population Density (#/km2) 0.103 0.158 0.081

% Agricultural Land 0.139 0.070 0.122
% Forest Area 0.191 0.087 0.201

Avg. Yearly Temp. (◦C) 0.380 0.256 0.391
Avg. Yearly Precip. (mm/year) 0.236 0.124 0.230

Table 5. Correlation (Pearson’s ρ) of avg. CLIP class text em-
bedding distance and country statistic difference, e.g. economic
(GDP per capita, HDI) and climate factors (temperature, precipi-
tation, forest area). We use the 63 countries in DollarStreet (1,953
pairs). Bold values have ρ>0.2, * means not significant (α=0.01).

Figure 4. Qualitative analysis. We show examples where
geography-specific descriptors improve/hurt vs. general descrip-
tors in zero-shot inference. We highlight the prediction’s descrip-
tors, bolding the highest activating one. Encoder=RN50.

5.3. Further Analysis

Are descriptions correlated with key country statistics?
For a pair of countries, we compute two values. We measure
the distance between each class embedding and take the av-
erage overall distance as one value. We also take the abso-
lute difference between statistics for those countries (from
[2, 42], e.g. difference in avg. yearly temperature) as the
other value. We compute the correlation between these two
values over every unique country pair in DollarStreet, show-
ing results in Table 5. We find that the strongest correlation
across each prompt type is with HDI, which summarizes
human development. It is notable that factors like yearly
temperature and precipitation also show moderate correla-
tions, indicating a potential role of climate. Future work
may further explore how object differences present with re-
spect to these factors. It will also be critical to ensure that
differences between countries are representative and not ex-
aggerated in embeddings.
Descriptor topics. We show a UMAP [29] visualization
comparing CountryLLM text embeddings for the category
homes across geographies in Fig. 5. Countries tend to group

Figure 5. UMAP [29] plot for CountryLLM and the category
homes in DollarStreet. Country-specific descriptors are often
close to those of other countries intra-continent, likely due to sim-
ilar weather, environment, and/or economic conditions.

by continent, showing the representations may capture sim-
ilarity in features like climate and/or economics. We exam-
ine a few topics mentioned in the CountryLLM descriptors
for homes. While “stone” is described across continents,
“bright colors” and “mud” are mentioned mostly in Africa,
and “balcony” in Europe and Asia. We show more in supp.
Success and failure examples. We provide examples of
CountryLLM vs. GeneralLLM in Fig. 4 on DollarStreet.
The model captures geographical descriptive knowledge
like “sandy colored stucco walls” for homes in Jordan, a fea-
ture which may be less common for Western homes. Some-
times the model may be too attentive to attributes, leading
to confusion (e.g. choosing rug over bed). Future work that
enhances alignment in VLMs can likely improve results.

6. Conclusion
In this work, we bring attention to how various strategies
to prompt CLIP affect recognition performance across ge-
ographies. In addition, through soft prompting with de-
scriptive knowledge, we provide a mechanism to achieve
a more geo-generalizable set of class representations across
regions. Our work is only a first step in this important area.
Limitations and ethical considerations. While our
method’s proof of concept is demonstrated in a positive ef-
fort to debias CLIP’s default representations through diver-
sity, due to the biased worldview of the Internet, CLIP’s
representations are likely inadequate, exaggerated, and/or
not fully representative for some countries. While we ex-
pect quality LLM knowledge to guide better representa-
tions, LLM knowledge can also be incorrect (e.g., through
hallucination), imprecise, or biased.
Future work. For the above reasons, our future efforts aim
to ensure more representative VLM/LLM knowledge. We
strongly advocate for the community to seek communica-
tion with diverse groups within all countries (i.e. to capture
areas that range from low to high income) to ensure better
representation and fairness in AI technology use. There are
notable continent-level disparities to still improve upon.
Acknowledgement. This work was supported by National
Science Foundation Grants No. 2006885 and 2329992.
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