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Abstract

We tackle the problem of learning object detectors in a
noisy environment, which is one of the significant challenges
for weakly-supervised learning. We use multimodal learn-
ing to help localize objects of interest, but unlike other meth-
ods, we treat audio as an auxiliary modality that assists
to tackle noise in detection from visual regions. First, we
use the audio-visual model to generate new “ground-truth”
labels for the training set to remove noise between the vi-
sual features and noisy supervision. Second, we propose an
“indirect path” between audio and class predictions, which
combines the link between visual and audio regions, and the
link between visual features and predictions. Third, we pro-
pose a sound-based “attention path” which uses the benefit
of complementary audio cues to identify important visual
regions. We use contrastive learning to perform region-
based audio-visual instance discrimination, which serves
as an intermediate task and benefits from the complemen-
tary cues from audio to boost object classification and de-
tection performance. We show that our methods, which up-
date noisy ground truth and provide indirect and attention
paths, greatly boosting performance on the AudioSet and
VGGSound datasets compared to single-modality predic-
tions, even ones that use contrastive learning. Our method
outperforms previous weakly-supervised detectors for the
task of object detection by reaching the state-of-art on Au-
dioSet, and our sound localization module performs better
than several state-of-art methods on AudioSet and MUSIC.

1. Introduction

There has recently been a rise in interest in multimodal
learning, where multiple channels are available to help de-
tect the presence of objects or events. In particular, sev-
eral tasks exist that use both audio and visual information
for prediction. Examples include multimodal pretraining,

Figure 1. Illustration of one of our contributions which utilizes
complementary audio cues. Our method includes a region-based
audio-visual instance discrimination module which produces an
audio-visual region similarity, in conjunction with the visual clas-
sification scores, to create an indirect visual path through audio
and improve the accuracy of predicted object labels.

where visual representations are learned jointly with the
aid of audio ones (either using raw sound or extracting any
present speech from it), and sound localization, where the
locations of objects that produce sounds are inferred based
on visual features. Learning from multimodal data offers
new opportunities: the supervision obtained from such data
can be considered “free”, however, when labels (e.g. object
categories) are extracted from such data, these labels may be
noisy. With video data specifically, even if a label (e.g. an



object label extracted from the accompanying speech) ap-
plies to a video clip as a whole, the object may not manifest
in all frames of that clip.

In this paper, we explore the potential of treating au-
dio as an auxiliary modality that helps deal with noise and
errors in the predictions of the model that is based on vi-
sual features. Our method is related to sound localization
[2, 21, 4, 44, 28, 22, 24] because we learn corresponding
visual regions to audio similar to prior work. However, it
is different because our main task is object detection, where
objects can be detected whether or not they make a sound.
We show that if there is relevant audio accompanying an
image, complementary cues from the audio improve detec-
tion performance. We believe our research has significant
potential in industry, especially for autonomous cars that
frequently detect objects that make noise.

We focus on the task of weakly-supervised object detec-
tion in video, where object annotations are available only at
the video level. We consider a noisy setting, where not all
frame-level object labels are correct, due to the challenge of
extracting those from the multimodal data. We then propose
three mechanisms for audio to serve as a helper modality to
help cope with the noise and provide a measure of confi-
dence for predictions from the visual channel.

Our first innovation relies on the intuition that the noise
will affect the visual and audio-visual predictions in a differ-
ent way because audio provides complementary cues. Thus,
to deal with the noise in the visual predictions, we compute
a new “ground-truth” training set based on the predictions
from the audio-visual model. We then retrain all models
with this new ground-truth set.

Our second innovation uses the associations between the
visual frames and corresponding audio (obtained through
region-based audio-visual instance discrimination) to pro-
vide secondary, additional evidence to predict an object la-
bel in a given frame (or region of a frame). In particular, we
look for audio as an intermediate link between the visual
features and object predictions, and make predictions using
this indirect path. This and the next contribution signifi-
cantly improve classification performance, whether or not
the labels in the original dataset are clean or noisy. This
part of our contribution is illustrated in Fig. 1.

Our third innovation uses sound as an attention mech-
anism to determine important visual regions, as a further
technique for dealing with noisy predictions. In particu-
lar, given an association matrix of region and sound tokens,
we compute aggregated importance for each region, and use
this to weight our region-level object predictions.

We conduct experiments on two datasets, VGGSound [9]
and AudioSet [18]. Additionally we use the MUSIC [44]
dataset to compare with prior sound localization methods.
VGGSound and AudioSet match the characteristics of mul-
timodal learning we are interested in, namely that they con-

tain rich complementary information from audio and visual
features. However, these datasets contain relatively clean
object category labels, which does not match our envisioned
setting because providing such clean labels requires human
effort. To make the setting more realistic, we artificially in-
troduce noise in the labels in these datasets, at the video clip
level, by flipping a small fraction of clip labels to mimic the
natural noise that is present on the internet—for example,
noisy supervision in the form of natural language descrip-
tions that web users provide when uploading their videos
to social media sites. We show that our methods very suc-
cessfully help cope with the noise in the training set, and
we achieve comparable results to those using the expensive
noise-free training set. Further, we show the individual con-
tribution of each of our method components. In particular,
our sound-based indirect and attention paths boost results
over just using contrastive learning and instance discrimi-
nation in the sound localization module. This improvement
holds both in the clean and noisy video clip label settings.

Our method performs better than other weakly-
supervised object detectors on AudioSet [18]. Furthermore,
our sound localization module outperforms several recent
methods on the AudioSet [18] and MUSIC datasets [44],
although sound localization is not our main task.

To summarize, our contributions are: (1) a method that
handles noise in the object labels, by inferring additional
ground-truth labels from the audio channel and retraining
the visual channel with those; (2) a method that uses audio
as an extra link between the visual input and predicted la-
bels (i.e., an object label should be inferrable from the visual
channel alone, as well as indirectly: through sound tokens
associated with the label, which themselves are related to
the visual input); and (3) a method that uses sound to in-
fer which visual regions are important for predicting object
labels.

2. Related Work
Weakly-supervised object detection (WSOD). WSOD

is the task of learning to predict categories and locations
of objects, from only image-level labels available at train-
ing time. The problem implies a multiple-instance learning
framework, where the regions in the image are considered
a “bag”, and the image-level object label suggests that at
least one of the items in the bag contains the object. Thus,
the image-level prediction can be computed as a (weighted)
summation over region-level scores for the object of inter-
est, and then a loss can be formulated over this image-level
prediction. Example approaches include [6, 36, 39, 17, 35].
Some approaches rely on an iterative improvement where
high-scoring proposals are treated as pseudo ground-truth
[36, 40, 43, 31, 33, 35].

There have also been works that alleviate the need for
image-level labels by extracting noisy label information



from caption or subtitle data [41, 10, 42, 38, 14]. In con-
trast to these works, we perform WSOD using visual and
audio data, by using audio to provide confidence in the vi-
sual predictions, and we deal with noise in the extracted
labels through this additional modality.

Multimodal pretraining. Researchers have proposed
learning visual representations in a joint multimodal con-
text, through techniques such as contrastive learning. The
modalities are often images, video, text, and sound. For
example, Miech et al. [26] learn to project video and tem-
porally co-occurring narrations close together in a learned
space, in contrast to non-co-occurring video and narrations,
which should be far. Alayrac et al. [3] learn how to best fuse
the visual, audio, and language modalities. Chen et al. [11]
ensure cooperation between image, video, and sound fea-
tures through distillation. Bertasius et al. [5] and Zareian et
al. [42] obtain representations with contrastive learning for
object detection tasks, but require some manually labeled
bounding boxes. Morgado et al. [27] only consider visual
and audio features (no speech), and contrast representations
both within and across modalities. Representations have
also been learned using transformer architectures, for exam-
ple in the context of joint image-text representations learned
on massive datasets (CLIP [29], UNITER [12], LXMERT
[34], Vilbert [25], etc.) or even smaller datasets [13].

These works perform pretraining, where some amount
of noise in terms of lack of semantic matches between the
different co-occurring modalities is tolerable. We instead
focus on a downstream object detection task, trained in a
supervised way with labels whose purity is important. We
thus propose how to use sound as a helper modality to help
cope with noise in the visual predictions.

Afouras et al. [1] extract supervisory signal from audio-
visual data to teach object detector in a self-supervised man-
ner. In the first stage, their method learns pseudo labels
and boxes in a contrastive sound localization network. In
the second stage, pseudo labels and boxes are used to train
Faster-RCNN [30]. They also experiment with a weakly-
supervised version using ground truth labels rather than
pseudo labels. Unlike Afouras et al. [1], we propose a novel
end-to-end network that trains object detector and sound lo-
calization modules together. We use audio signals during
object detection training and inference so audio modality
has a direct effect on performance on test data. For exam-
ple, during the detection of a car object in a test image, the
audio of the car is used to improve the detection. Further,
we use visual region proposals, while they use spatial visual
features to localize visual regions with the help of audio.
While we train our methods on AudioSet for 5 epochs on 2
GPUs in less than a day, Afouras [1] train their methods on
AudioSet for 230 epochs on 64 GPUs over 3 days.

Sound localization and separation. Sound localization
[4, 8, 28, 24] is to find the sounding region in the visual

scene. [4, 8] calculate similarity between audio and spatial
visual features to produce a heatmap. [16, 44, 15] perform
separation of sound mixtures by estimating spectrogram
masks based on visual signals. [37, 2, 32] propose audio-
guided attention mechanisms. [2] utilize audio-visual con-
currency to train a video model capable of distinguishing
and grouping occurrences of the same category. [4, 37, 8]
use contrastive learning to link audio and visual informa-
tion for localization and separation. [21, 22] propose using
an object dictionary and training a model using category-
level audio-visual distribution matching to understand the
category of sound sources.

Prior works do not have a special object detection mod-
ule and do not use any object detection labels, nor do they
do training for detection. According to our knowledge, our
method is the first method that uses sound in an object de-
tection network in an end-to-end manner. Our attention ap-
proach detects important visual regions with the guidance
of audio, similar to prior works [37, 2, 32] but findings are
used to enhance the predictions from visual features in ob-
ject detection module. In prior sound localization works,
audio is an indispensable modality to localize the visual re-
gions. However, our object detection module detects all tar-
get objects not considering whether they produce sound. In
case the audio is not existing or is unrelated, our method
still detects objects. Different than [4, 37, 8], we use region
proposals rather than spatial visual features in contrastive
learning. While prior works use the metrics such as IoU,
CIoU and AUC, we use mAP metric from object detection
literature. While [21, 22] produces class pseudo labels, we
use image-level labels in weakly-supervised object detec-
tion module. However, our sound localization module do
not use labels. It produces class-agnostic predictions.

3. Method
Our goal is to learn visually-based object detectors in

a weakly-supervised manner with the help of the audio
modality. We set our work in the classic weakly-supervised
object detection (WSOD) setting. However, we use region-
based audio-visual instance discrimination to define a sound
indirect path to object predictions, and sound-based atten-
tion mechanism for visual regions. Our approach consists
of three stages described in Fig. 2: visual detection mod-
ule for weakly-supervised detection, audio detection mod-
ule, and region-based audio-visual instance discrimination
module.

3.1. Visual detection module

The visual module closely follows prior work in weakly-
supervised object detection [6, 41, 38]. We extract visual
proposals with their accompanying features. An image is
fed into the visual convolutional layers. Then, ROIAlign
is used for cropping the proposals, and visual regions are



Figure 2. We propose a region-based audio-visual instance discrimination module whose resulting similarity (middle) is computed from
both visual (top) and audio (bottom) modules, and combined with the visual module to use sound as auxilary to improve visual detection
module performance.

generated by Edge Boxes [45], resulting in fixed-sized con-
volutional feature maps. Finally, a box feature extractor is
applied to extract a fixed-length feature for each visual re-
gion. We use vi where i ∈ {1, ...,M} to denote the visual
regions v of a given frame. This process results in visual
region feature vectors φ(vi) ∈ Rd (d = 4096).

Because no region-level labels are available, during
training we optimize visual predictions of image-level la-
bels v̂pc where c ∈ {1, ..., C} and C is the number of
classes. The proposal features φ(vi) are fed into two par-
allel fully-connected layers to compute the visual detection
scores vdeti,c ∈ R1 and classification scores vclsi,c ∈ R1:

vdeti,c = wdetᵀ
c φi(v)+ b

det
c , vclsi,c = wclsᵀ

c φi(v)+ b
cls
c (1)

These classification and detection scores are converted to
probabilities such that vpclsi,c is the probability that class c is
in present proposal vi, and vpdeti,c is the probability that vi is
important for predicting image-level label yc. Element-wise
multiplication of classification and detection score probabil-
ities vpcomb

i,c is used to compute the loss, and in inference to

compute mAP results.

vpdeti,c =
exp(vdeti,c )∑M
k=1 exp(v

det
k,c )

, vpclsi,c =
exp(vclsi,c )∑C
k=1 exp(v

cls
i,k )

(2)
Finally, visual aggregated image-level predictions v̂pc

are computed as follows, where greater values of v̂pc ∈
[0, 1] mean higher likelihood that c is present in the image.

vpcomb
i,c = vpdeti,c vp

cls
i,c , v̂pc = σ

(
M∑
i=1

vpcomb
i,c

)
(3)

Assuming the label yc = 1 if and only if class c is present,
the visual classification loss used for training the model is
defined as follows. Again, since no region-level labels are
provided, we must derive region-level scores indirectly, by
optimizing this loss.

Lv = −
C∑

c=1

[yc log v̂pc + (1− yc) log(1− v̂pc)] (4)



3.2. Audio detection module

We extract audio features for each region from log-mel
spectrograms. Let sj where j ∈ {1, ..., N} denote the au-
dio regions s in a video, and N is the number of audio re-
gions which is variable and dependent on the duration of
the audio. We split the audio into regions for each second
of the audio. Because each audio region contains informa-
tion of different intensities, we believe that using audio re-
gions rather than using spectrogram as a whole improves
performance in audio-visual instance discrimination. This
process results in audio region feature vectors ψ(sj) ∈ Rd

(d = 4096).
The aggregated video-level sound prediction ŝpc is com-

puted similarly to the visual detection module, and the audio
classification loss is defined as:

Ls = −
C∑

c=1

[yc log ŝpc + (1− yc) log(1− ŝpc)] (5)

3.3. Region-based audio-visual instance discrimina-
tion

Our region-based audio-visual instance discrimination
module is trained using a contrastive learning framework
where audio representations are contrasted with those of
negative video representations or vice versa, inspired by
[27]. The purpose of our method is to learn many-to-many
relations between visual region features φ(vi) and audio
region features ψ(sj). In other words, our method learns
which visual region is related to which sound region and to
what extent.

The visual region features φ(vi) and the audio region
features ψ(sj) share the same d-dimensional embedding
space so they can be contrasted. We further L2-normalize
the φ(vi) and ψ(sj) vectors. The cosine similarity of these
feature vectors is computed to obtain a similarity of audio
and visual regions, with the expectation that the visual re-
gion showing an object is correlated with the audio region
having the sound of the corresponding object. The similar-
ity is given by:

h(vi, sj) = 〈φ(vi), ψ(sj)〉/ρ, i ∈ {1, ...,M}, j ∈ {1, ..., N}
(6)

where ρ, is a learnable temperature parameter.
We next compute an aggregated visual similarity a(vi) ∈

R1 that is part of our attention path. This visual similarity
indicates the relation of each visual region with the corre-
sponding audio set s in the video clip. Our attention path
and the most strongly attended visual region, based on the
audio set s, can be computed as:

a(vi) =

N∑
j=1

h(vi, sj), S(v, s) = max
i
a(vi) (7)

We use noise contrastive estimation (NCE) [19] to de-
fine the contrastive learning by considering image and audio
pairs (v, s) ∈ B where B is a image-audio pair batch. Pairs
are defined as a randomly sampled frame from a video, and
the audio channel of that video. The first component of the
NCE loss contrasts an image with negative audio samples to
measure how closely the image matches with its audio pair
among the others in the batch:

Ls→v = − 1

|B|
∑

(v,s)∈B log
exp(S(v, s))

exp(S(v, s)) +
∑

(v′,s′)∈B exp(S(v, s
′))

(8)
The second component of the NCE loss contrasts an au-

dio with negative image samples to measure how closely the
audio matches with its image pair among the others in the
batch:

Lv→s = −
1

|B|
∑

(v,s)∈B log
exp(S(v, s))

exp(S(v, s)) +
∑

(v′,s′)∈B exp(S(v
′, s))

(9)
These two components are summed to obtain the NCE

loss:
LNCE = Ls→v + Lv→s (10)

We jointly optimize our framework with the three de-
fined losses, and the final loss is given by:

L = λ1LNCE + λ2Lv + λ3Ls (11)

where λ1, λ2, and λ3 are weighting hyperparameters.

3.4. Sound as Indirect Path

We next describe how to use sound as a helper modal-
ity to provide confidence for or to adjust the visual-only
predictions. We define an indirect path to link between vi-
sual frames and audio to the predict object label in a given
frame. We use the region-based audio-visual instance dis-
crimination module to make this association. The similarity
of audio and visual regions h(v, s), and the combined clas-
sification and detection score probabilities from the visual
detection module vpcomb, are matrix-multiplied. Finally,
the aggregated image-level indirect path prediction is com-
puted as follows:

ipj,c = h(v, sj)
ᵀ vpcomb

c , îpc = σ

 N∑
j=1

ipj,c

 (12)

where h(v, sj)ᵀ ∈ R1×M (ᵀ is transpose) and vpcomb
c =

[vpcomb
1,c , . . . , vpcomb

M,c ] ∈ RM×1. The greater values of
îpc ∈ [0, 1] mean higher likelihood that class c is present
in the image. This means that a class c will have a strong
prediction probability if a visual region strongly indicates



it, but that visual region is strongly related to a sound re-
gion. In other words, we only make confident predictions
when there is evidence of some object producing a sound.
Furthermore, ipc = [ip1,c, . . . , ipN,c] ∈ RN×1 represents
the indirect path in Fig. 2. The indirect path is only used for
classification because there are no scores computed at the
visual region level.

3.5. Sound as Attention Path

As our second contribution, we define an attention path
from the sound modality, which indicates the importance of
visual regions. This auxiliary path helps improve both clas-
sification and detection performance. The visual similar-
ity a(vi) (Eq. 7) is used to weight the visual region scores
vpcomb

i,c by performing element-wise multiplication. Thus,
corresponding visual regions that include more information
about the object gain priority. The attention path api,c for
detection and the aggregated attention path for classification
are computed as follows:

api,c = a(vi) vp
comb
i,c , âpc = σ

(
M∑
i=1

api,c

)
(13)

where âpc ∈ [0, 1]. Furthermore, apc =
[ap1,c, . . . , apM,c] ∈ RMx1 represents the attention
path in Fig. 2 and is also used in the combination path
(Sec. 3.6). The attention path is used for both detection and
classification, since both visual-region (api,c) and frame
scores (âpc) are available.

3.6. Sound as the Combination of Paths

The indirect and attention paths are different paths that
provide complementary cues to the visual detector from au-
dio, to help combat noise. We combine these paths to bene-
fit from both cues. We input the attention path apc into the
indirect path computation to make them cooperate with the
similarity of audio and visual regions h(v, s) as follows:

ĉpc = σ

 N∑
j=1

h(v, sj)
ᵀ apc

 (14)

where ĉpc ∈ [0, 1]. The combination of paths is only used
for classification.

3.7. Sound to Update Training Set Labels

Deep neural networks, rather than simply memorizing
noise, can generalize after training on noisy data. More-
over, we expect that noisy labels have impact on visual and
audio-visual predictions in a different way. Based on this in-
formation, as our final contribution, we define new ground-
truth (GT) training set labels using the predictions of sound
as the combination of paths model. This method uses the

generalization ability of neural networks and varied effect
of noise on different modalities.

We first train the audio-visual model with noisy labels,
then we use the model (Sec. 3.6) to make prediction on
training set. If the model prediction ĉpc is different from
the noisy label and ĉpc > 0.7 (to be sure that it is a strong
enough prediction to clean noise), we change the noisy label
with the prediction as the new GT label:

yk = 1(k = argmax ĉpc) ∗ 1(ĉpk > 0.7) (15)

where 1(·) denotes the indicator function. We follow this
procedure for the whole training set and generate new GT
labels. Then we retrain all model variations with the new
labels.

4. Experiments
We evaluate the components of our method on classifi-

cation and detection tasks. We test the following methods:
• The visual-only direct path (VISUAL-ONLY, Sec. 3.1)

and audio-only direct path (SOUND-ONLY, Sec. 3.2);
• The same paths but trained with audio-visual instance

discrimination and contrastive learning (Sec. 3.3), re-
sulting in VISUAL-ONLY-CONT. and SOUND-ONLY-
CONT.;

• Our method contributions: sound as indirect path
(SOUND-INDIRECT, Sec. 3.4), sound as attention path
(SOUND-ATTENTION, Sec. 3.5) and sound as the com-
bination of paths (SOUND-COMBINATION, Sec. 3.6).

We evaluated all methods under three different settings:
Clean (where labels are expected to be clean at the video
level, but some noise still persists in that not all frames in a
video exhibit the objects mentioned in the label set), Noisy
(where we flip 20% of the video labels to obtain a more real-
istic scenario), and New GT. This last setting uses the labels
obtained using our SOUND-UPDATE method (Sec. 3.7).We
compare our detection performance with state-of-art detec-
tors Afouras [1] and PCL [35] in Table 2. Furthermore, we
assess the performance of audio-visual instance discrimi-
nation method with state-of-art sound localization papers
[44, 4, 32, 20, 21, 1] in Table 4.

4.1. Experimental Setup

4.1.1 Data

AudioSet [18] is a large audio-visual dataset consisting of
10-second videos from YouTube. During training, we use
the “unbalanced” split of AudioSet-Instruments [4] used by
[21] spanning 15 instrument classes. We use the “balanced”
split of AudioSet-Instruments for evaluation on the annota-
tions provided by [21]. The full AudioSet-Instruments is
used for class-agnostic single object localization in Table 4.
VGGSound [9] is an audio-visual correspondent dataset
consisting of 10-second clips, extracted from videos up-



Clean Noisy New GT (SOUND-UPDATE)
Method mAP30 mAP50 mAP[50:95:5] mAP30 mAP50 mAP[50:95:5] mAP30 mAP50 mAP[50:95:5]

VISUAL-ONLY 48.3 26.7 10.1 30.2 14.8 4.2 41.2 21.7 6.7
VISUAL-ONLY-CONT. 52.9 30.4 11.3 31.8 15.5 4.6 43.5 23.9 7.9
SOUND-ATTENTION 53.3 30.8 11.6 33.1 16.0 4.9 44.3 25.6 8.6

VISUAL-ONLY 36.3 17.6 5.8 27.1 13.9 3.8 30.3 15.3 4.8
VISUAL-ONLY-CONT. 38.9 20.0 6.4 30.2 14.3 4.9 33.1 16.7 5.3
SOUND-ATTENTION 41.8 21.4 7.0 32.8 15.1 5.2 36.4 18.1 5.7

Table 1. mAP (%) results of visual methods with clean, noisy, and new GT labels on
AudioSet (top) and VGGSound (bottom). The best performer per column is in bold.

Method mAP30 mAP50 mAP[50:95:5]

PCL [35] 39.0 17.5 4.4
AFOURAS - SELF SUP. [1] 44.3 28.0 9.6
AFOURAS - WEAK SUP. [1] 50.6 30.9 10.3
SOUND-ATTENTION (OURS) 53.3 30.8 11.6

Table 2. Comparison to detection methods on
AudioSet. Baselines’ numbers taken from [1].
The best performer per column is in bold.

AudioSet VGGSound

Method Clean Noisy New GT Clean Noisy New GT

VISUAL-ONLY 60.1 58.7 59.8 79.5 77.0 82.7
VISUAL-ONLY-CONT. 62.2 59.4 60.4 82.9 77.8 81.5
SOUND-INDIRECT 62.9 59.6 60.7 85.4 78.4 83.3
SOUND-ATTENTION 63.1 59.6 60.8 85.5 78.5 83.5
SOUND-COMBINATION 63.5 59.9 61.1 86.3 79.4 84.3

SOUND-ONLY 71.7 69.8 70.4 76.7 74.3 75.9
SOUND-ONLY-CONT. 73.2 71.1 71.9 78.6 75.8 76.5

Table 3. Accuracy (%) of visual (top five lines) and audio (bottom
two lines) methods with clean, noisy, and new GT labels on Au-
dioSet and VGGSound. The best performer per column is in bold,
and all of our proposed methods that outperform the VISUAL-
ONLY-CONT. are underlined.

loaded to YouTube. We chose a subset that includes 10k
training and 2k test videos with 13 classes (guitar, car, dog,
train, violin, keyboard, motorboat, drum, airplane, heli-
copter, trombone, motorcycle and saxophone). We manu-
ally annotated 800 test frames for ground truth boxes. We
produce our mAP results according to these annotations.

The MUSIC dataset [44] contains 685 videos, including
536 solo and 149 duet. There are 11 different types of mu-
sical instruments. We use the first five/two videos in each
instrument category in solo/duet during test. The remain-
ing videos are used for training. We use this dataset to only
compare our sound localization module with other papers
and we use the annotations provided by [21]. While we
perform class-agnostic localization on MUSIC-solo, class-
aware localization is performed on MUSIC-dual following
the prior literature.

Noisy Labels Our motivation to generate new GT labels is
similar to [41] that reduces noise to improve detection, but
our novelty is to benefit from sound. [41] uses the COCO
dataset [23] that includes noisy captions. However, it does
not contain sound and we could not find any dataset that
includes sounding objects and noisy supervision. Thus, we
choose commonly used audio-visual datasets, AudioSet and
VGGSound, and artificially create noise to mimic the natu-
ral noise. To create noise, we randomly change 20 percent
of the labels. We observe new GT labels reduce the noise to
4 percent for AudioSet and 5 percent for VGGSound.

4.1.2 Implementation Details

Before training the visual detector, we extract at most
1000 proposals using Edge Boxes [45], commonly used in
weakly-supervised detection [6, 35], from OpenCV [7]. We
use the indirect path, attention path and the combination
of paths only during inference. They are not part of the
training, but the audio-visual similarity that they rely on is
learned in training. Further implementation details can be
found in the supplementary file.

4.2. Sound as auxiliary modality

Our proposed SOUND-INDIRECT and SOUND-
ATTENTION methods that benefit from complementary
audio cues outperforms the VISUAL-ONLY and VISUAL-
ONLY-CONT. methods that only use the visual signals for
classification (Table 3) in all noise and dataset settings.
Note that VISUAL-ONLY-CONT. also benefits from
sound (through contrastive learning), but only during
representation learning, while our proposed methods
directly affect object prediction results and thus outperform
VISUAL-ONLY-CONT.

SOUND-INDIRECT and SOUND-ATTENTION link be-
tween audio and visual in a different way providing dis-
tinct complementary cues. Thus, we observe that SOUND-
COMBINATION outperforms indirect and attention paths
and reaches the best results in all settings (Table 3).

Note that we use SOUND-INDIRECT, SOUND-
ATTENTION and SOUND-COMBINATION paths only
in inference, which means they are obtained from the same
trained network as VISUAL-ONLY-CONT., and there is no
randomness effect of training in our results.

In the edge case that there is only audio signal, only the
audio recognition can be performed, as in SOUND-ONLY
and SOUND-ONLY-CONT (Table 3).

Importantly, we use SOUND-ATTENTION for detection
(note SOUND-INDIRECT cannot be evaluated in this set-
ting), and it considerably outperforms the VISUAL-ONLY
and VISUAL-ONLY-CONT. results in all noise, dataset and
mAP settings in Table 1. This shows that using audio cues
improves the performance in object detection.



Figure 3. Qualitative comparison of VISUAL-ONLY (top) and our proposed SOUND-ATTENTION (bottom) with clean labels on VGGSound.
We show boxes with the highest confidence for each image. The ground-truth objects are helicopter, guitar, drum, train, dog in this order.

MUSIC-solo MUSIC-dual AudioSet
Method IoU@0.5 AUC CIoU@0.3 AUC IoU@0.5 AUC

SOUND-OF-PIXELS [44] 40.5 43.3 16.8 16.8 38.2 40.6
OBJECT-THAT-SOUND [4] 26.1 35.8 13.2 18.3 32.7 39.5
ATTENTION [32] 37.2 38.7 21.5 19.4 36.5 39.5
DMC [20] 29.1 38.0 17.3 21.1 32.8 38.2
DSOL [21] 51.4 43.6 30.2 22.1 38.9 40.9
AFOURAS [1] - - - - 50.6 47.5

OURS 50.8 46.2 41.1 26.0 43.4 40.3

Table 4. Comparison to sound localization methods on the
MUSIC-solo, MUSIC-dual and AudioSet datasets. The best per-
former per column is in bold.

4.3. Comparison of clean and noisy environments,
contribution of SOUND-UPDATE

We experiment with our methods in three different noise
settings which are clean, noisy, and new GT. We use noisy
labels to obtain new GT labels with the help of SOUND-
COMBINATION, resulting in SOUND-UPDATE. We observe
the results in the new GT settings are superior to the results
in the noisy setting showing that using audio to help clean
up the label set and improve visual predictions (SOUND-
UPDATE), is quite effective.

4.4. Qualitative analysis

We visualize the object detection performance of
VISUAL-ONLY and SOUND-ATTENTION in Fig. 3.
SOUND-ATTENTION is more successful in detecting differ-
ent objects than VISUAL-ONLY that detects only some part
of the object including unrelated regions for the examples.
Moreover, the detected boxes of SOUND-ATTENTION have
higher confidence scores (between 0.13 and 0.40) in the
examples than the detected boxes of VISUAL-ONLY (be-
tween 0.03 and 0.06) The confidence scores are shown in
the upper-left of the boxes in the examples. The confidence
score is defined as vpcomb

i,c in Eq. 3.

4.5. Comparison to detection methods

The main comparison is presented in Table 2 because we
propose object detection as the main task. Our SOUND-

ATTENTION method clearly outperforms PCL [35] and
AFOURAS - SELF SUPERVISED [1] on AudioSet in Table 2.
Even though AFOURAS - WEAK SUPERVISED [1] performs
slightly better than our method using the mAP@50 metric,
SOUND-ATTENTION method clearly outperforms it in the
more relaxed and stricter mAP metrics, and we reach state-
of-art on AudioSet.

4.6. Comparison to sound localization methods

The comparison in Table 4 is a supportive that shows
although the localization module aims to assist the detec-
tion module, it also performs competitively on an individual
basis, compared to state-of-the-art methods on the MUSIC
and AudioSet datasets. Sound localization is a task in which
the sound modality is essential in inference. Only target ob-
jects that produce sound should be localized. Thus, we use
audio-visual region similarity (Eq. 6) rather than proposed
visual detection module to produce localization results. We
use the union of bounding boxes having audio-visual simi-
larity more than a threshold to obtain a heatmap following
the sound localization literature. We use class predictions
for each visual region in the detection module to perform
class-aware localization in the MUSIC-dual dataset. Our
method outperforms most localization methods.

5. Conclusion
We have demonstrated how sound can help to tackle

noise in weakly-supervised object detection. Our method
created new GT labels to reduce noise in supervision.
SOUND-UPDATE successfully handled the noise and im-
proved classification and detection results. The indirect path
(SOUND-INDIRECT) provides additional evidence through
audio as an intermediate connection. Furthermore, we pre-
sented the attention path (SOUND-ATTENTION) that deter-
mines relevant visual regions based on sound.
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