Hiding in Plain Strokes: Handwriting and Applications to Steganography

James Hahn
University of Pittsburgh
Pittsburgh, PA 15260

jamhahn@yahoo.com

1. Introduction

Steganography, the process of hiding secret information
within normal-looking data (a cover), lies at the intersection
of computer science and security. Recently, covers have
come in the form of images [2]. Standard methods consider
fully saturated (dense) images, which simplifies the encod-
ing and decoding tasks. First, slight modifications of pixel
intensities (needed to encode a message) are imperceptible
when the image is dense, but easy to detect if an image is
sparse (e.g. text on a plain white background). Further, if
the message being encoded is dense too (e.g. also an im-
age), slight decoding mistakes are not important, because a
human viewer can still correctly perceive the meaning.

We consider a complementary and more challenging sce-
nario: encoding a sparse message into a sparse cover. We
consider a sequence of handwriting strokes as the cover, and
embed a secret message by altering each coordinate in the
cover, rather than superimposing a new signal (message).

The stages of our approach are as follows. First, the se-
cret information is encrypted before combining it with the
cover using neural cryptography. Second, the information
is hidden in the stroke data of a person’s handwriting on
a white background. We utilize coordinate sequences of
human handwriting, modified with slight offsets dependent
on the secret information being encoded. The new gener-
ated coordinates are nearly identical to the original ones,
preserving the primary structure of the handwriting. Our
method thus explores a new avenue of steganography based
on data modification rather than embedding.

2. Handwriting Generation

The first step in the process is generating handwriting,
which we are going to use as our cover image. Handwrit-
ing is particularly suitable as a toy problem because it is
replicable, but unique in style, and is an everyday form of
communication. For example, one might wish to encode
secret messages into their signature, which they include at
the bottom of their emails. We utilize Graves’ approach
to handwriting generation using an LSTM [4]. The LSTM
operates over sequences of pen-tip locations from the IAM

Adriana Kovashka
University of Pittsburgh
Pittsburgh, PA 15260

kovashka@cs.pitt.edu

Online Handwriting Database: the z and y coordinates, and
an end-of-sequence binary flag. The model also relies on a
mixture of Gaussians: at each timestep, the LSTM outputs
a value to parameterize the Gaussian distributions, which
predict the location of the next coordinate in the sequence
based on the previously generated coordinates.

3. Data Encryption

We will hide data in the generated handwriting sample
images, which will eventually be covers. Before this step,
the secret data is encrypted to add another level of security.
Recently, machine learning and encryption have intersected
to form a new field, neural cryptography. Researchers [1, 3]
recently developed pipelines to generate a unique, symmet-
ric key cipher. User Alice wants to send a message to Bob,
so she encrypts secret data M with key K to produce M,
and Bob decrypts M’ with the same key K. They add one
adversary, Eve, who receives M’ and attempts to recover M
without access to the key. Alice and Bob attempt to mini-
mize Bob’s reconstruction error and make Eve’s reconstruc-
tion error close to 50% (random guess), while Eve attempts
to minimize her own reconstruction error. This approach
lacks robustness to an arbitrary adversary.

We propose a new approach where Dave, a new adver-
sary, receives the encrypted data M’ and attempts to recover
M without access to the key, similar to Eve. However, the
main difference is Alice and Bob are unaware of Dave’s
existence. Therefore, even if they learn a robust algorithm
against Eve, they may not be able to protect against an arbi-
trary adversary. With appropriate settings, we can achieve
0% reconstruction error for Bob, 50% reconstruction error
for Eve (random guessing bits of data), and 50% reconstruc-
tion error for Dave. Thus, Alice and Bob successfully learn
a robust, generalized encryption algorithm.

4. Steganography

Next, once the secret data is encrypted and coordinates
are generated for a cover image of handwriting, these must
be combined. An autoencoder network is trained to read
in an (x,y) coordinate location and 2 bits of secret data.
This outputs some new coordinate with a small displace-
ment. For example, the pixel coordinate (1,2) combined



with the data (1, 1) (binary) might produce (1.23,1.94). To
produce discrete coordinates from continuous data, we add
a block of grey pixels for floating point locations. This is in
contrast to a specific, discrete pixel location, such as (1, 1),
which has one black pixel at that location, surrounded by
white pixels. Then, should one want to extract the encoded
secret message, this displaced coordinate is passed into a
de-steganography network to output the original encrypted
data. In this work, as proof of concept, we use a fixed cover.
Two loss functions are used to train this network: cover
loss and decoding loss. The cover loss is the L; distance
from the new perturbed coordinate to the original coordi-
nate; we want this distance to be small so that the resulting
image looks like a plausible handwriting image. The de-
coding loss is the L; of decoded and original data; we want
small values so if we Alice sends an encoded message to
Bob (unbeknownst to Eve or Dave), he can recover it. In our
results, the decoding loss was 0.0029, indicating an ability
to successfully retrieve the original data. For the cover loss,
the sum of = and y displacements was 0.1700 on average.

S. Pipeline and Integration

After discussing handwriting generation, data encryp-
tion, and steganographic coordinate displacement, we de-
scribe how to integrate these individual processes into a
full steganography pipeline. During encoding, some se-
cret data M is read into a system. This data is converted
to binary and split into chunks of 128 bits since that is the
input required for the pre-trained neural cryptography net-
work. These chunks are combined to form the encrypted
data M’. This encrypted data is split into mini-chunks of
2 bits since that is the amount of data combined with coor-
dinates in the steganography network. These 2-bit chunks
are sequentially encoded with the original generated coordi-
nates for handwriting, C, to produce new, slightly displaced
coordinates C’. Then, C” are all printed onto a canvas, such
as a PNG image file, to produce the final handwriting sam-
ple, which is the container image.

In order to decode, the container image is read into mem-
ory. An 80 x 80 window, anchored at the top-left of the
image, is extracted from the image. This window is passed
into a convolutional neural network with structure similar to
LeNet. These image features and an initial coordinate state
are passed into an LSTM to produce the initial coordinate
in the sequence of the handwriting. Then, this predicted co-
ordinate and a horizontally shifted window are once again
passed into the network to produce the next coordinate. This
process is repeated until all coordinates in the sequence
are predicted where the end of the sequence is marked by
two sequential coordinates with an end-of-sequence flag of
1. Then, these extracted coordinates (C”) are sequentially
passed into the decoder part of the steganography autoen-
coder, to extract C and M’. Next, M’ is passed into the
decryption network to produce M.

1 he glc\/ < olue

Figure 1. The steganographic container image with the secret mes-
sage “Meet me on the east side at 11:03pm.”

Figure 1 displays results of the encoding. Although
hard to notice, the container images contain small pertur-
bations of the coordinates. Thus, smaller scales will lead to
a passerby not suspecting any encoding. The secret message
is successfully recovered.

6. Discussion and Future Work

Our newly proposed steganography pipeline improves on
previous machine learning steganography papers in several
aspects. First, the handwriting cover image is sparse (vast
whitespace), but there is no risk of secret message/image
artifacts in the form of background noise. Next, the cover
images can be any arbitrary size and contents, which con-
trasts with the pre-trained neural networks of image input
size N x N in other steganography papers. The above im-
age with cover text “The sky is blue” is arbitrary, where any
form of text can be generated. Finally, the encoded data lies
in the modification of the image’s appearance, rather than
being embedded into the pixel intensity values. As such,
the image appearance is modified, rather than the contents,
providing a new avenue of steganography and further ro-
bustness on the human visual inspection task.

We hope this toy problem can be generalized and ab-
stracted to other dataset domains and tasks. For exam-
ple, cover images can be sparse sketches whose coordinates
are modified, or on regular images, textures or mid-level
semantics (attributes) can be modified to embed different
forms and amounts of data. In the future, we will exploit
generative adversarial networks operating over coordinates
or semantic properties. We will also develop an end-to-end
approach that uses a key to both encrypt and steganogra-
phize a message, for added robustness to adversaries.

References

[1] M. Abadi and D. G. Andersen. Learning to protect com-
munications with adversarial neural cryptography. CoRR,
abs/1610.06918, 2016.

[2] S. Baluja. Hiding images in plain sight: Deep steganography.
In NeurIPS, 2017.

[3] M. Coutinho, R. de Oliveira Albuquerque, F. Borges, L. J.
Garcfa-Villalba, and T.-H. Kim. Learning perfectly secure
cryptography to protect communications with adversarial neu-
ral cryptography. In Sensors, 2018.

[4] A. Graves. Generating sequences with recurrent neural net-
works. CoRR, abs/1308.0850, 2013.



