Learning attributes from human gaze

Nils Murrugarra-Llerena Adriana Kovashka

Department of Computer Science University of Pittsburgh

IEEE 2017 Winter Conference on Applications of Computer Vision

Background

Introduction

Many attributes possess different interpretations as opposed to objects.

- boot: most of the drawings will be similar
- formal or open shoe: many drawings will be different

Motivation

- Why not integrate humans more closely in attribute learning?
 - using human gaze maps.

Q: ls it **pointy**? Q: ls s

Q: Is she chubby?

Background/Approach

Uniqueness

- Fast
- Orthogonal to DNN approaches
- Subconscious + Humans' intuition

Data Collection

- GazePoint GP3 eye-tracker.
- 4 sub-sessions.
- Datasets: shoes, faces and scenes.
- Screening phase.
- Validation images.

Generate gaze templates

- ST: Merge gaze maps from positive annotations normalize [0, 1] threshold with 0.1 – mask selected cell from a 15x15 grid.
- MT: It captures different attribute meanings using clustering.

Approach

Attribute learning using fixed gaze templates

- ST: Mask train/test images extract features evaluate a classifier.
- MT: Similar to ST.
 - Train an individual classifier per cluster.
 - Predict a novel image as positive if at least one of the classifiers forecasts it contains the attribute.

Attribute learning using gaze prediction

- Instead of using a fixed template Learn a gaze predictor
 - predict gaze maps for novel images STP/MTP

Evaluation

Baselines

- Whole Image (WI), which extracts features from the whole image without a mask.
- **Data-Driven (DD)**, which uses a binary mask created from an L1-regularizer over features extracted on a grid.

5

- Unsupervised Saliency (US), which uses a binary mask from a state-of-the-art saliency predictor (Huang et al, ICCV 2015).
- **Random grid (R)**, which employs a random binary mask from a 15x15 grid.
- **Random Ensemble grid (RE)**, which creates an ensemble of *R*.

Evaluation

Comparison with Spatial Extent (SE) method (Xiao and Lee, ICCV 2015)

Adaptation to scenes attributes

Attribute	Objects	Attribute	Objects
climbing	mountain, sky, tree, trees, building	sunny	sky, tree, building, grass, trees
open area	sky, trees, grass, road, tree	driving	sky, road, tree, trees, building

Applications

Visualizing attribute models

Baby-faced attribute

Big-nosed attribute

Whole Image Gaze Template

7

Finding schools of thought

We improve schools of thought using gaze.

Original	Gaze-based	
0.37	0.40	
F-measure		

Further discussion

See you at poster #6

References

- X. Huang, C. Shen, X. Boix, and Q. Zhao. Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks. In ICCV, 2015
- 2. F. Xiao and Y. J. Lee. Discovering the spatial extent of relative attributes. In ICCV, 2015.