

Problem

- Existing methods assume monolithic attributes are sufficient [Lampert et al. CVPR 2009, Farhadi et al. CVPR 2009, Branson et al. ECCV 2010, Kumar et al. PAMI 2011, Scheirer et al. CVPR 2012, Parikh & Grauman ICCV 2011, ...]
- However, there are real perceptual differences between annotators

• Further, attribute terms can be imprecise

Is formal?	Is	blue or green?	-200
= <i>formal</i> wear for a conference ? OR	English: "blue" Russian: "neither" ("голубой" vs. "синий") Japanese: "both"		
= formal wear for a wedding?			Ov
	("青" = blu	e and green)	(

Our Idea

1) Treat learning of perceived attributes as an adaptation problem.

We adapt a generic attribute predictor trained with a large amount of majority-voted data with a small amount of user-labeled data.

2) Obtain labels implicitly from user's search history.

Impact: Capture user's perception with minimal annotation effort. Personalization makes attribute-based *image search* more accurate.

Attribute Adaptation for Personalized Image Search Adriana Kovashka Kristen Grauman The University of Texas at Austin

Learning Adapted Attributes

 $D_r = \{(\boldsymbol{x}_{i_1}, \boldsymbol{x}_{i_2})\}_{i=1}^N$ **Training data**

> $\min_{\boldsymbol{w}_{r}} \frac{1-\delta}{2} \|\boldsymbol{w}_{r}\|^{2} + \frac{\delta}{2} \|\boldsymbol{w}_{r} - \boldsymbol{w}_{r}'\|^{2} + C \sum_{i=1}^{N} \xi_{i}$ subject to $\boldsymbol{w}_r^T \boldsymbol{x}_{i_1} - \boldsymbol{w}_r^T \boldsymbol{x}_{i_2} \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad \forall i_1$

 $f_r(\boldsymbol{x}) = \delta f'_r(\boldsymbol{x}) + \sum \beta_i \boldsymbol{x}^T (\boldsymbol{x}_{i_1} - \boldsymbol{x}_{i_2})$ Prediction

B. Geng, L. Yang, C. Xu, and X.-S. Hua. "Ranking Model Adaptation for Domain-Specific Search." IEEE TKDE, March 2010.

Similar formulation for binary classifiers (Yang et al. 2007)

Inferring Implicit User-Specific Labels

Transitivity Ο

Learning

- $f_r(T) > f_r(A) \cap f_r(T) < f_r(B) \implies f_r(A) < f_r(B)$
- Contradictions

Datasets

Shoes^[Berg10, Kovashka12] attributes: pointy, open, bright, shiny, ornamented, high-heeled, long, formal, sporty, feminine **SUN**^[Patterson12] attributes: sailing, vacationing, hiking, camping, socializing, shopping, vegetation, clouds, natural light, cold, open area, far-away horizon Size: 14k images each; Features: GIST, color, HOG, SSIM

verweight? or just Chubby?

Feedback implies no images satisfy all

Contradiction implies attribute models are

Relax conditions for

Adjust models using new ordering on some image pairs.

Impact of Adapted Attributes for Personalized Search

The personalized attribute models allow the user to more quickly find his/her search target. Implicitly gathering labels for personalization saves the user time, while producing similar results.

