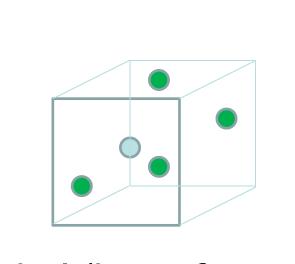
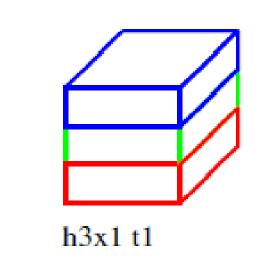
Learning a Hierarchy of Discriminative Space-Time Neighborhood Features for Human Action Recognition

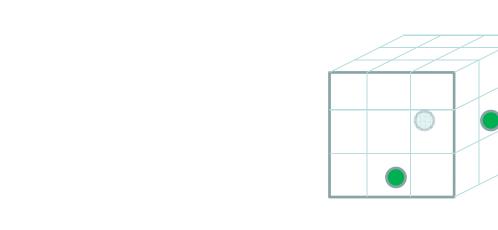
Adriana Kovashka and Kristen Grauman University of Texas at Austin

Problem

- Individually, spatio-temporal features may be "too local" for action recognition.
- How to describe relative spatio-temporal information flexibly?
- Existing neighborhoods / approaches:







grids per feature

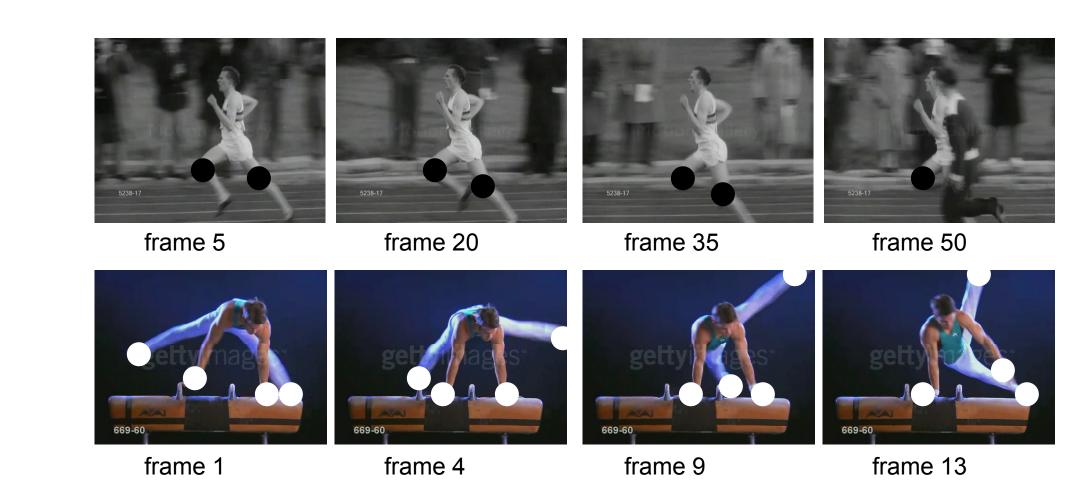
[Gilbert et al. 09]

global (bag of words)

clip bins [Laptev et al. 08, Choi et al. 08, Sun et al. 09]

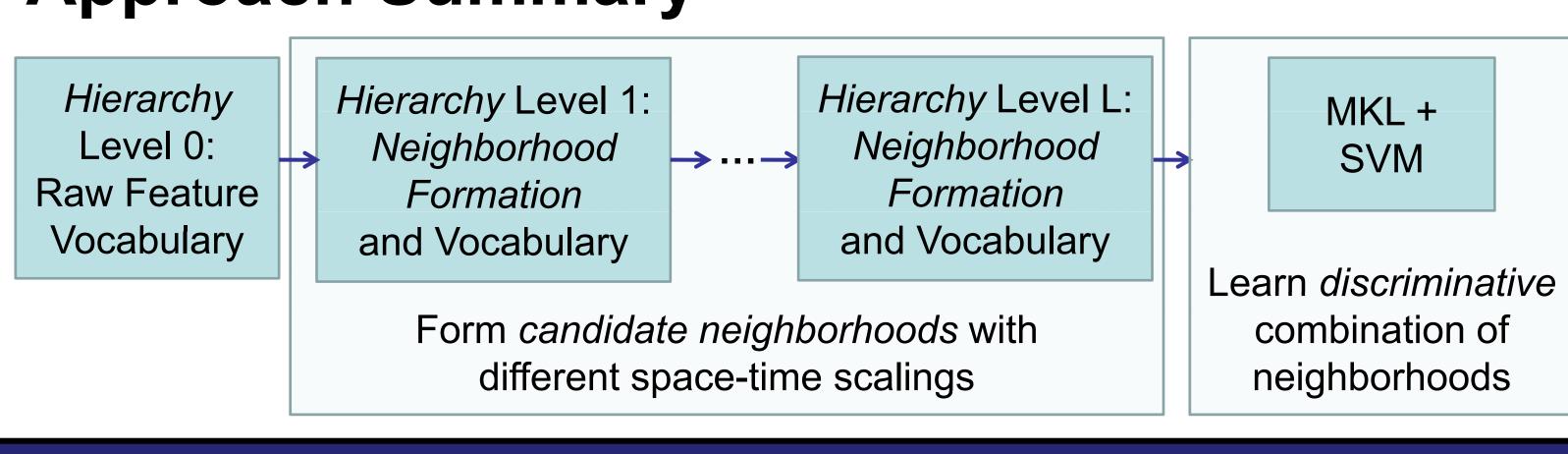
- Fixed-sized grids disregard that action classes have different sparsity of features, and clip-level binning is sensitive to segmentation.

Our Idea

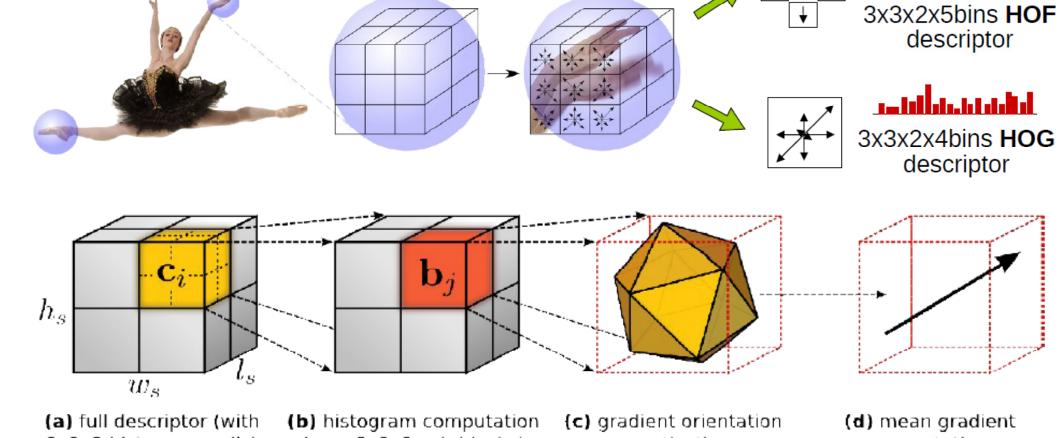


- Compute a visual vocabulary preserving *relative* spatio-temporal relationships.
- Form *variable-shaped* neighborhoods of interest points.
- Learn a hierarchy of discriminative neighborhoods for different action classes.

Approach Summary



Base Features

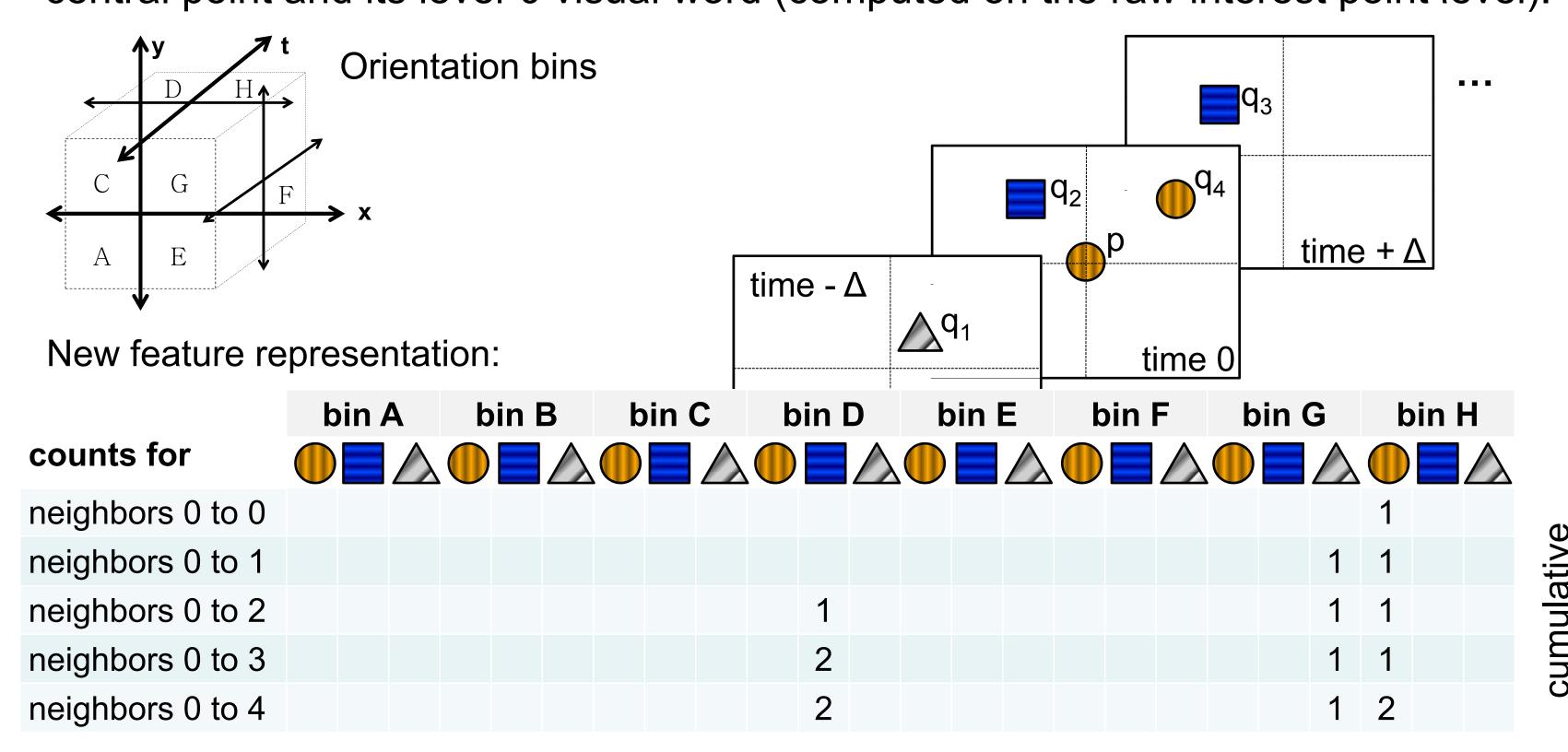


HoF/HoG features Laptev et al., CVPR 2008] for sparse interest points image: Wang et al. 09]

HoG3D features [Kläser et al., BMVC 2008] for dense interest points

Neighborhood Formation

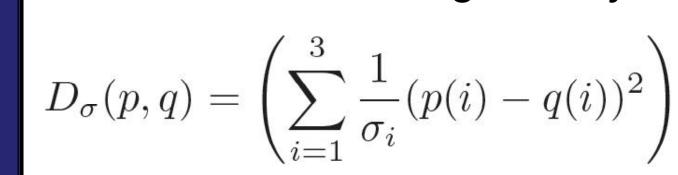
- Form neighborhoods of interest points around each point as a center.
- For each of the N nearest neighbors, record its orientation with respect to the central point and its level-0 visual word (computed on the raw interest point level).

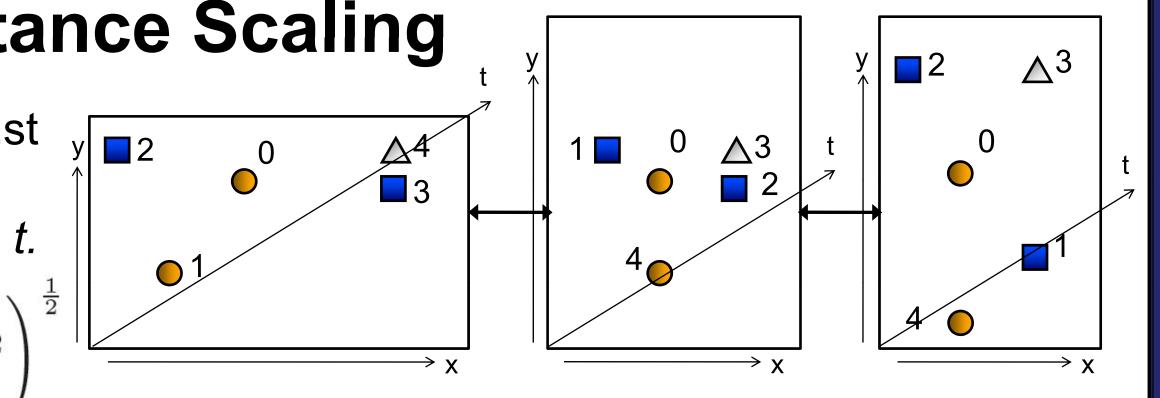


- Reshape each histogram into a vector to obtain next level's feature representation.
- Quantize new representations of all points to form next level's vocabulary H.

Space-Time Distance Scaling

- One pixel != one frame, must y 2 2 consider neighborhoods for different scalings of x, y, t.





- Repeat

neighborhood

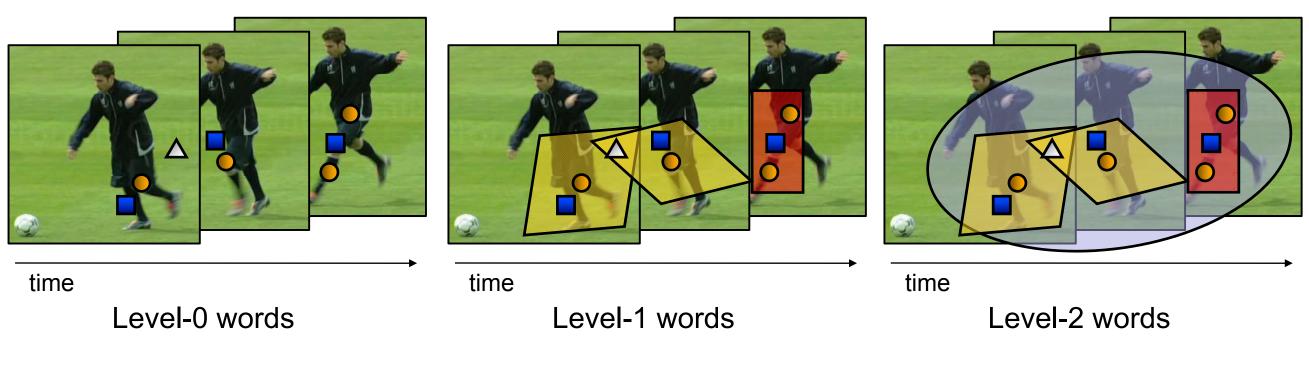
formation to

higher-level

vocabularies.

generate

Hierarchy of Neighborhood Words



 $\mathcal{H}_{\sigma}(V) = \{H_0(V), H_1(V), \dots, H_L(V)\}$

Discriminative Space-Time Neighborhoods

- $C = F(ML+1) \chi^2$ kernels (F feature types, M distance scalings, L levels).
- Given these kernels, use Multiple Kernel Learning (MKL) to learn the most discriminative combinations. $K(H_i, H_j) = \sum_{c \in \mathbf{C}} w_c \exp\left(-\frac{1}{A_c} \chi^2(H_i^c, H_j^c)\right)$

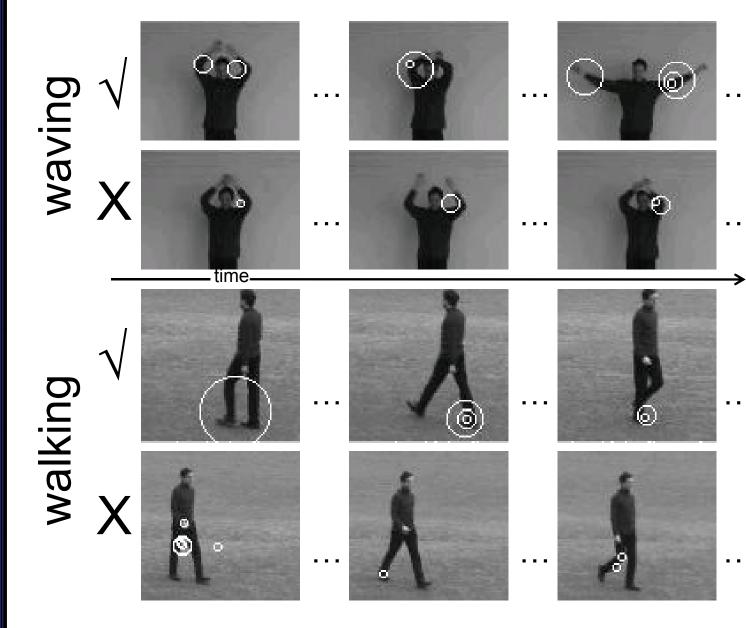
Results

KTH Dataset

[Schuldt et al., ICPR 2004] 6 classes, 600 videos

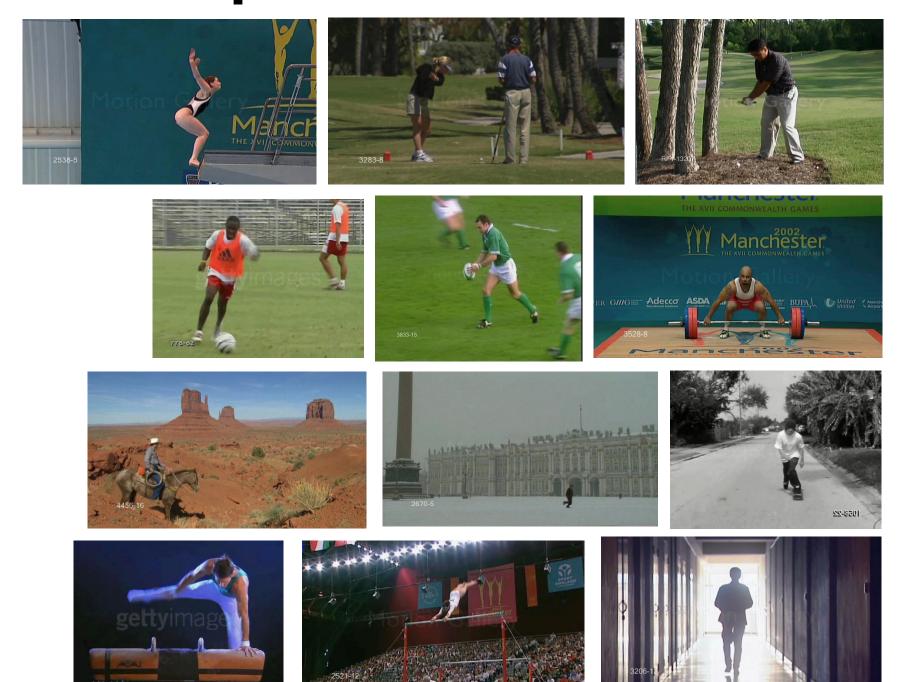
Approach	Accuracy
Laptev et al. 2008	91.80%
Gilbert et al. 2009	94.50%
Our method	94.53%

Accuracy equal to best known for KTH.



Examples of neighborhoods learned to be useful / not useful.

UCF Sports Dataset



[Rodriguez et al., CVPR 2008] 10 classes, 150 videos + 150 flipped Leave-one-out, flip of test *not* in train

	Approach	Accuracy/Class
	Our method	87.27%
	Average of all kernels	84.43%
ź	Level-0 baseline	85.49%

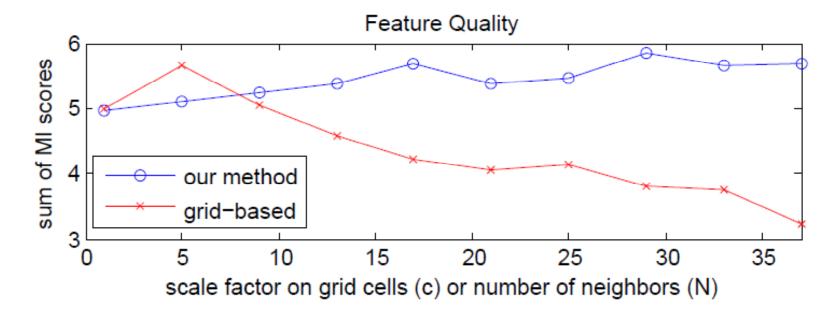
State-of-the-art results for UCF Sports.

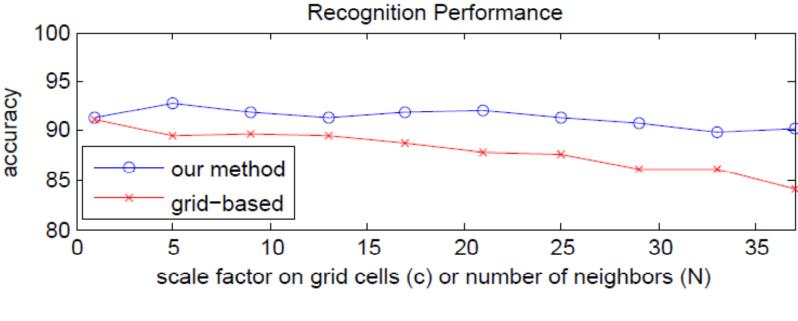
Levels	Accuracy/Class	Average MKL Weight
0	85.49%	$0.63 (\pm 0.3)$
1	82.16%	$0.10 (\pm 0.2)$
2	73.30%	$0.10 (\pm 0.2)$

All vocabulary levels for one feature distance contribute to the accuracy on UCF Sports.

Implementation details: k = 300 (4k for UCF level-0); N = 5; L = 2

Fixed-Size vs Variable-Shaped Neighborhoods





Feature distinctiveness and recognition accuracy of our level-1 neighborhood words (one distance scaling) less sensitive to neighborhood size parameter than grid-based baseline.

Conclusions

- Hierarchies capture feature relationships at multiple granularities.
- Showed importance of translation-invariant and discriminative variable-shaped neighborhoods.