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Proteomic Analysis of Urine in Kidney Transplant Patients
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The differentiation of BK virus-associated renal allograft nephropathy (BKVAN) from acute allograft rejection (AR) in renal
transplant recipients is an important clinical problem because the treatment can be diametrically opposite for the two
conditions. The aim of this discovery-phase biomarker development study was to examine feasibility of developing a
noninvasive method to differentiate BKVAN from AR. Surface-enhanced laser desorption/ionization (SELDI) time-of-flight
mass spectrometry analysis was used to compare proteomic profiles of urine samples of 21 patients with BKVAN, 28 patients
with AR (Banff Ia to IIb), and 29 patients with stable graft function. SELDI analysis showed proteomic profiles that were
significantly different in the BKVAN group versus the AR and stable transplant groups. Peaks that corresponded to m/z values
of 5.872, 11.311, 11.929, 12.727, and 13.349 kD were significantly higher in patients with BKVAN. Bioinformatics analyses
allowed distinction of profiles of patients with BKVAN from patients with AR and stable patients. SELDI profiles also
showed a high degree of reproducibility. Proteomic analysis of urine may offer a noninvasive way to differentiate BKVAN
from AR in clinical practice. The identification of individual proteomic peaks can improve further the clinical utility of this

screening method.

J Am Soc Nephrol 17: 3248-3256, 2006. doi: 10.1681/ASN.2006050437

K virus (BKV) infection is common in the general pop-
ulation (1,2). The importance of BKV infection in

B

a significant problem in immunocompromised patients, such as

healthy individuals is unclear, but it has emerged to be

bone marrow transplant patients and patients with solid-organ
allograft (1-3). BKV renal allograft nephropathy (BKVAN) now
is recognized to have an important role in development of renal
allograft dysfunction (3-6). In recent studies, the prevalence of
asymptomatic BK viruria in kidney transplant patients has
been reported to be on the order of 30% (7). Approximately 6 to
10% of these patients develop BKVAN, and the reported graft
loss rate in this group has been as high as 50% (6,7).

BKVAN can resemble acute allograft rejection (AR) both
clinically and histologically (3-5). Differentiation between
BKVAN and AR is important, however, because the treatment
is diametrically opposite for the two conditions. In general,
immunosuppression needs to be reduced in patients with
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BKVAN, whereas it is increased in AR. Currently, these two
clinical conditions cannot be differentiated in a reliable way on
the basis of clinical and laboratory findings, and a definitive
diagnosis of BKVAN requires allograft biopsy. Even the histo-
logic differentiation of BKVAN from AR can be difficult unless
viral inclusions are seen on allograft biopsy (4,5).

Early detection of patients with increased risk for BKVAN is
likely to improve their ultimate outcome. However, currently,
no noninvasive methods are available for this purpose. During
the past few years, proteomic profiling of blood and urine
samples has been used to develop noninvasive biomarkers for
several pathologic states, including various cancers (8-12). Re-
cently, such techniques also have been used in developing
diagnostic algorithms for AR in kidney transplant patients
(13-17). In this study, we report that proteomic analysis of
urine potentially may be a noninvasive way to differentiate
patients with BKVAN from patients with stable graft function
or AR.

Materials and Methods

These studies were reviewed and approved by Institutional Review
Boards of the University of Pittsburgh Medical Center and Children’s
Hospital of Pittsburgh.
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Table 1. Patient characteristics®
Characteristic Stable (n = 29) BKVAN (n = 21) AR (n = 28)
Female gender (%) 15 (52) 6 (29) 10 (36)
Age (mean [range]) 53 (21 to 73) 51 (23 to 78) 45 (19 to 68)
White race (n [%]) 26 (90) 18 (86) 25 (89)
Primary diagnosis (1 [%])
diabetic nephropathy 7 (24) 6 (29) 4(14.3)
glomerulonephritis 6 (21) 4(19) 9 (32)
polycystic kidney 7 (24) 2(9.5) 4 (14.3)
other 9 (31) 9 (42.5) 11 (39.3)
Serum creatinine (mg/dl; mean [range]) 1.2 (0.6 to 1.8)° 2.8 (1.7 to 4.3) 3.8 (1.6 to 13.1)
Cadaveric donor (1 [%]) 14 (48) 17 (81) 19 (68)
Transplant number (median) 1 1 1
No. of rejections (median [range]) 0 2(1tob) 1(1 to 4)

Months posttransplantation (mean [range])

9.3 (1 to 60)°

13.9 (1 to 54)

21.2 (1 to 77)

?AR, allograft rejection; BKVAN, BK virus-associated renal allograft nephropathy.

PP < 0.001 versus BKVAN and acute rejection groups.
P = 0.002 versus AR group.

Patients and Sample Collection

Urine and blood samples were collected from all kidney transplant
patients at the University of Pittsburgh Medical Center who consented.
As a part of the study protocol, the initial samples were obtained within
48 h after transplantation and thereafter during each routine follow-up
visit. Patients who were undergoing kidney biopsy also provided a
voided urine sample <24 h before the biopsy. One portion of each
sample was sent for routine examination, and an aliquot was centri-
fuged at 2000 rpm for 10 min at 4°C and stored at —80°C until further
analyses without any protease inhibitors.

Kidney transplant patients with biopsy-proven BKVAN and their
clinical information were retrieved from an electronic database. Urine
samples were available from 21 of these patients. Further searches were
performed to identify the two comparison groups of 28 patients with
AR and 29 patients with stable graft function. Acute and chronic AR
was classified according to the Banff classification (18).

Detection of Viral Infections

Each study patient was screened for BKV viruria and viremia using
a quantitative PCR assay (19). BKVAN was diagnosed by histopatho-
logic examination, which typically showed viral inclusions and positive
immunohistochemistry and/or in situ hybridization (19). Urine sam-
ples additionally were screened for cytomegalovirus (CMV), adenovi-
rus, and human herpesvirus 6 (HHV-6) using PCR assays. CMV screen-
ing also was performed by detection of pp65 antigenemia.

Surface-Enhanced Laser Desorption/lonization Time-of-
Flight Mass Spectrometry Analyses

Urine samples were thawed and centrifuged at 15,000 X g for 5 min at
4°C. Protein content was measured using the Bradford assay. Urine sam-
ple aliquots totaling 10 ug of protein were dispensed, adjust to 160 ul of
final volume with PBS, then flash-frozen again and stored at —80°C before
use on surface-enhanced laser desorption/ionization (SELDI) chips. Sam-
ples were analyzed using two chip types (IMAC30 and CM10) on three
replicate spots, with total protein of roughly 1.7 ug per spot.

The IMAC30 ProteinChip arrays were preactivated using Ciphergen
Bioprocessor (Ciphergen Biosystems, Fremont, CA) by loading with 50
wul of 100 mM CuSO, on each spot. The chips were shaken on a tube

mixer (Tomy Seiko Co., Ltd., Tokyo, Japan) for 5 min (speed form 20,
amplitude 7). Each array spot was rinsed with 200 ul of HPLC-grade
water and aspirated before addition of 50 ul of sodium acetate (100
mM, pH 4). The chips then were equilibrated twice for 5 min with 200
ul of binding buffer (PBS + 0.2 M NaCl). For preactivation of CM10
ProteinChip, the arrays were equilibrated for 5 min with 200 ul of
binding buffer (100 mM sodium acetate, pH 4).

The urine samples were thawed on ice and denatured with 60 ul of
9 M Urea/4% CHAPS in 40 mM Tris (pH 9) and then further diluted 1:5
in IMAC30 and CM10 binding buffers. The samples were arrayed in a
blinded layout of combined case/control samples, together with a
standard pooled sample (one spot on each array for quality assurance
purposes). Arrays were incubated overnight with shaking at 4°C, then
rinsed twice for 5 min with binding buffer, then twice for 1 min with
water, and air-dried for 20 min. Energy-absorbing matrix (sinapinic
acid) in 50% acetonitrile/0.5% trifluoroacetic acid was applied to arrays
using automated rapid spotting on Biomek2000 robotic workstation

Table 2. Renal allograft biopsy rejection scores (Banff
classification)

Rejection BKVAN AR
Scores (n =21) (n = 28)
Acute
0 6 0
1A 5 13
1B 9 12
ITA 1 2
11B 0 1
Chronic
0 6 7
1A 8 16
1B 0 0
ITA 5 5
11B 2 0
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(Beckman-Coulter, Fullerton, CA) in two 1-ul applications, separated
by 5 min. Chips were air-dried for 1 h and stored in the dark at room
temperature until SELDI analysis.

The reacted ProteinChip Arrays were analyzed using the PBSIIc
ChipReader mass spectrometer. The spotted chips were read, in ran-
dom order, in an uninterrupted run using the Ciphergen ChipReader
AutoLoader device. The SELDI time-of-flight mass spectrometry
(SELDI-TOE-MS) spectra (0 to 100 kD) were collected by the accumu-
lation and averaging of 192 laser shots from 16 positions across the
width of the ProteinChip Array spot. A laser intensity of 180 was used
in a positive ion mode, ensuring that transient shot intensities were
below saturation of the detector, with a detector sensitivity setting of 9
(2900 V) and a focus lag time of 900 ns, using mass deflection at 1500
Da. The protein masses were calibrated externally using the 7-in-1
purified peptide molecular mass standard (Ciphergen Biosystems).

Data Processing and Statistical Analysis

The spectra that were generated by SELDI-MS-TOF were analyzed
using two independent software tools: (1) Ciphergen ProteinChip with
CiphergenExpress and (2) proteomic data analysis package (PDAP).
PDAP is a data analysis program developed at the Computer Science
department of the University of Pittsburgh and implemented in
MATLAB (MathWorks, Natick, MA) (20).

Before analyses, all spectra were preprocessed using the following
preprocessing steps: Variance stabilization, baseline correction, calibra-
tion/rescaling, smoothing, and profile alignment. Spectra with the total
ion current normalization factor of >2 SD over the mean were consid-
ered bad spots and excluded from the subsequent analyses. After
preprocessing, profile peaks were identified. All subsequent data anal-
ysis was performed on these peaks.

Univariate Analysis

The three patient groups were compared for demographic and other
clinical characteristics using the t test for continuous variables and x*
test for categorical variables. For the SELDI data, Ciphergen Protein-
Chip software was used to detect peaks, and the corresponding peak
intensities were exported to Microsoft Excel. The significance of differ-
entially expressed peaks among three groups was studied using the
Kruskal-Wallis one-way ANOVA on ranks. Pairwise comparisons be-
tween groups that were found to be significantly different on Kruskal-
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Wallis test were done using ¢t test (SPSS 13.0 statistical software; SPSS,
Chicago, IL).

Multivariate Analysis

The discriminative potential of peak combinations in proteomic pro-
files was analyzed using multivariate statistical prediction models.
Three prediction tasks were considered in multivariate analyses: (1)
BKVAN versus AR, (2) BKVAN wversus stable transplant, and (3) AR
versus stable transplant. Evaluation of prediction performance was
conducted using repeated random subsampling of the data in the study
into multiple training and test subsets (21).

Statistical machine learning algorithms were used to evaluate the
ability of profile features (peaks) to discriminate between samples that
belonged to the various patient groups. Three classification algorithms
were examined for potential disease prediction models: (1) Support
vector machine (SVM) (22), (2) Classification and Regression Tree
(CART) (23), and (3) Random Forest (RF) (24). All three models were
trained on peaks that were identified by the PDAP program (20). In
addition, the SVM algorithm was applied to the subset of the top 100
differential peaks according to the P value of the t test (25).

Each learning model was evaluated by dividing the data multiple
times into training and test sets using the repeated random subsam-
pling approach (21) with 70:30 training/testing splits. The classification
model was always learned on the training set and evaluated on the test
set. The performance statistics that were used to evaluate the learning
models were Achieved Classification Error (ACE), sensitivity, and spec-
ificity of the model on test sets. The performance statistics of each
model were obtained by averaging the results over multiple train/test
divisions. The CART model in the Ciphergen-based software was eval-
uated on three training/testing splits. All other classification methods
were evaluated on 40 different training/testing data splits.

Given the small size of the study samples, an analysis was conducted
to test whether the classification results might represent a finding that
may occur by chance (26). The analyses, called Permutation Achieved
Classification Error (PACE), evaluates whether the classification per-
formance that is observed on the true data could be achievable on
randomly regrouped data (27). Briefly, PACE computes the empirical
distribution of classification errors under null random conditions and
compares it with the error on the original data. In each permutation, a
sample is randomly reassigned to one of the disease categories
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Figure 1. Surface-enhanced laser desorption/ionization (SELDI) analysis of urine samples from patients with BK virus-associated
renal allograft nephropathy (BKVAN; A), patients with allograft rejection (AR; B), and patients with stable graft function (C)
analyzed in triplicate (1 through 3) at onset of study (O) and the same samples analyzed on separate experiment 3 mo later (+3).
Proteomic profile of the samples is shown as peak intensities (I) and as false-gel image (II).
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(BKVAN, AR, or control). For example, the sample (and its profile) that
belonged to a patient with BKVAN was randomly reassigned to either
the AR, the control, or the BKVAN group. This process was repeated
for each sample until all 78 samples were reassigned randomly into
three groups. After that, the entire model building and evaluation, with
multiple train/test iterations, is performed by PACE. This is repeated
for 1000 permutations to define the distribution of errors. The results of
PACE are expressed in terms of the mean of the classification error
distribution (MACE) along with the 95th and 99th percentiles of this
distribution. The difference between error distribution and the ACE is
representative of the nonrandom nature of the results that are obtained
by the various disease prediction modeling algorithms.

Results
Patient Characteristics

The clinical and demographic characteristics of the various
groups are shown in Table 1. All of the patients in the stable
transplant group had stable graft function at least 6 wk before
and after sample collection. The time from transplantation to
sample collection was significantly shorter in stable transplant
patients compared with patients with AR (P < 0.05). None of
these patients had a history of delayed graft function. Patients
with AR and BKVAN had significantly higher mean serum
creatinine levels (P < 0.05) than stable transplant patients (Ta-
ble 1). Otherwise, there were no significant demographic dif-
ferences between study groups (Table 1).

The histologic findings in the AR group showed acute rejec-
tion scores of IA to IIB. Also, 16 (57%) of the patients with AR
had low-grade (IA) chronic rejection changes in the allograft
biopsy. In the BKVAN group, 15 (71%) of the patients were
considered to have changes that would be compatible with
grade IA to ITA acute rejection scores, and a similar proportion
also showed features of chronic rejection. The acute and chronic
rejection scores for patients with AR and BKVAN are shown in
Table 2. Urinary viral PCR studies showed BKV load that
ranged from 30,500 copies to >2 X 10'° copies/ml in all of the
BKVAN urine samples. HHV-6 PCR was positive in two pa-
tients in the stable transplant group and in one patient each in
both AR and BKVAN groups. One patient with AR also had
simultaneously positive adenovirus, HHV-6, and CMV PCR
tests, whereas two patients were positive for simultaneous
adenovirus and CMV. In the BKVAN group, there were two
patients with positive adenovirus PCR in urine.

Characteristics of Urine Proteome Analyzed
by SELDI-TOF-MS

The Ciphergen peak detection software detected a total of 158
peak clusters. Eighty of these peaks were found in IMAC30
data, and 78 were found in the CM10 data. We assayed 27
samples in triplicate in two sessions separated by 3 mo (a total
of six profiles for each of the 27 samples for a total of 162
profiles). The profiles were reproducible to a very significant
extent despite the relatively low protein amount (<2 ug) re-
acted with each ProteinChip spot and a gap of 3 mo (Figure 1).

Visual analysis of the urinary profile data was done using
Ciphergen software to identify peaks that were different be-
tween the study groups. Urine samples of stable transplant
patients showed peaks with significantly higher peak intensi-
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ties at the m/z values of 4.755, 6.245, 6.440, 7.672, 8.012, 8.230,
9.636, 9.870, 10.067, 10.569, and 16.918 kD compared with the
samples of patients with AR or BKVAN on the analyses of both
chip data. Figure 2 shows an overview of the SELDI profiles of
the three groups in false gel views, and Table 3 shows further
details of the characteristics of some of the differentially ex-
pressed peaks. A profile with a combination of four closely
clustered peaks (IMAC30) between 6.072 and 6.440 kD together
with separate peaks at 9.870 and 10.569 kD was found to be
relatively constant and was present in the urine samples of 25
(86%) of the stable transplant patients (Figure 2B, frames 1 and
3). This peak pattern was seen in a significantly smaller subset
of 35% of the patients with AR and 24% of the patients with
BKVAN. The only peak that was seen more frequently and with
a higher mean peak intensity in the AR group than in the other
two groups was a peak located at m/z value of 8.854 kD in the
IMAC30 data set (Figure 2B, frame 2, Table 3).
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Figure 2. False-gel image of urine protein profiles correspond-
ing to m/z 5 to 25 kD using the CM10 chip data set (A) and the
IMAC30 chip data set (B). The framed m/z areas show exam-
ples of regions with significant differences between the various
study groups. (A) Frame 1 = 5872 kD (upregulated in
BKVAN), frame 2 = 12.727 to 13.349 (upregulated in BKVAN),
and frame 3 = 16.918 kD (upregulated in stable). (B) Frame 1 =
6.072 to 6.440 kD (upregulated in stable), frame 2 = 8.854 kD
(upregulated in AR), frame 3 = 9.636 to 10.569 kD, and frame
4 = 23.482 kD (upregulated in BKVAN).
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Table 3. Mean peak intensities of the most significant peaks differentiating BKVAN from other patient groups

Parameter Normalized Mean Peak Intensity (SD)

CM10
m/z 5.872 11.311 11.929 12.727 13.349 23.482
BKVAN 25.8 (20.5) 2.1(1.8) 26.5 (16.5) 15.0 (8.4) 5.8 (6.1) 11.0 (8.2)
AR 13.1 (15.0)* 1.3 (1.5)* 14.9 (13.9)? 7.2 (7.6)° 2.07 (1.4)° 9.1(5.7)
stable 8.21 (11.9)¢ 1.5(1.9)7 10.7 (10.3)® 45 (5.1)¢ 1.7 (0.9)° 13.1 (5.4)

IMAC30
m/z 5.872 11.311 11.929 12.727 13.349 23.482
BKVAN 15.6 (11.3) 154 (8.1) 27.9 (13.6) 21.2(11.4) 6.7 (5.3) 14.4 (11.9)
AR 10.9 (10.2) 8.7 (6.3)° 20.9 (13.7) 14.5 (12.2) 34 (2.6)* 7.5(7.6)
stable 7.9 (8.6)* 8.3 (4.8)° 19.8 (13.4) 13.2 (11.2)° 3.6 (3.1)2 4.8 (5.5)°

P < 0.05 versus BKVAN.
bp < 0.01 versus BKVAN.
P = 0.001 versus BKVAN.

Univariate analyses indicated that the most significant peaks
(m/z ratio [chip type]) that differentiated BKVAN samples
from the other two groups were 5.872 (CM10, IMAC30), 11.311
(CM10, IMAC30), 11.929 (CM10), 12.727 (CM10), and 13.349
(CM10, IMAC30) kD peaks. All of these peaks were higher in
patients with BKVAN and were seen more frequently in this
group (Figures 2 and 3, Table 3). The analysis of IMAC30 data
also showed significantly higher peak intensity in BKVAN
versus stable patients for a protein with the m/z value of 23.482
kD (P = 0.005; Figures 2B and 3). The peak at 11.311 kD (Figure
3, panels 1 and 2) was one of the most significant peaks that
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differentiated between patients with BKVAN from patients
with both stable graft function (P < 0.001) and patients with AR
(P = 0.002).

The results of the disease prediction modeling analyses
that were performed using three different models (SVM, RF,
and CART) are shown in Table 4. The ACE, sensitivity, and
specificity of test sets depended on the chip type and on the
classification model used. The best performance characteris-
tics with the least classification error (16.6%), maximum
sensitivity (79.4%), and maximum specificity (86.5%) for dif-
ferentiating BKVAN from AR group was obtained by SVM
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Figure 3. (1) False-gel image of 11.311-kD peak showing significant upregulation in BKVAN versus AR. (2 through 5) Scatter plots
of the various significant classifiers in the two protein chips that differentiated BKVAN from AR and controls (IMAC30 11.3 kD
[2], CM10 11.9 kD [3], CM10 12.7 kD [4], and IMAC30 23.4 kD [5]).
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Table 4. Performance of various prediction models optimized for IMAC30 and CM10 chips for the BKVAN versus
AR groups, BKVAN versus stable transplant groups, and AR versus stable transplant groups®

IMAC30 (%) CM10 (%)
Prediction Model  pieyan BKVAN AR BKVAN BKVAN AR
versus AR versus Control versus Control versus AR versus Control versus Control
SVM + all peaks
ACE 29.56 23.14 39.14 41.61 35.16 40.56
sensitivity 61.09 68.97 58.94 47.77 54.99 58.39
specificity 76.64 82.11 62.47 65.41 71.63 60.36
SVM + 100 t test
ACE 16.83 11.33 17.45 25.94 30.98 30.37
sensitivity 79.40 83.78 81.08 65.35 48.42 68.03
specificity 86.49 92.23 84.08 80.54 76.06 71.45
RF
ACE 27.50 16.76 2291 35.28 34.62 37.59
sensitivity 51.75 72.70 72.01 43.25 29.32 57.02
specificity 88.80 91.04 82.41 81.34 91.20 68.34
CART
ACE 29.00 18.00 29.00 39.00 20.00 32.00
sensitivity 62.00 90.00 67.00 42.00 67.00 56.00
specificity 76.00 77.00 75.00 74.00 90.00 81.00

“The support vector machine (SVM) classifier was tested on all peaks (SVM + all peaks) and the top 100 differential peaks
according to the P value of the t test (SVM + 100 ¢ test). The other two models include Random Forest (RF) and Classification
and Regression Tree (CART). The statistics listed include Achieved (average) Classification Error (ACE), sensitivity, and
specificity.

algorithm that was performed on the top 100 classifier peaks sults were much lower than the mean error (MACE) ex-
for the IMAC30 chip data set. The PACE analysis that was pected by chance alone. The resulting 95th and 99th percen-
performed on two of the classification algorithms (SVM and tiles of this distribution along with the MACE are shown in
RF) indicated that the actual classification error (ACE) re- Table 5.

Table 5. Permutation-based validation of the classification signal using PACE methods®

IMAC (%) CM10 (%)

Parameter BKVAN BKVAN AR BKVAN BKVAN AR
versus AR versus Control versus Control versus AR versus Control versus Control

SVM + all peaks

ACE 29.56 23.14 39.14 41.61 35.16 40.56
MACE 48.61 47.96 50.25 48.77 48.27 50.34
95% 45.17 45.11 47.32 45.94 45.33 47.59
99% 44.44 44.47 46.45 45.22 45.05 47.18
SVM + 100 t test
ACE 16.83 11.33 17.45 25.94 30.98 30.37
MACE 48.57 48.06 50.25 48.80 48.42 50.31
95% 46.72 46.33 48.50 46.89 46.25 48.10
99% 46.11 45.59 47.45 45.67 45.60 47 .41
RF
ACE 27.50 16.76 22.91 35.28 34.62 37.59
MACE 45.23 42.88 50.70 45.58 44.10 51.01
95% 43.67 41.33 48.86 43.94 42.66 49.12
99% 42.67 40.53 47.95 42.89 41.47 48.80

aThe statistics shown include ACE and mean classification error (MACE) for the error distribution under the random
permutation of labels and its 95th and 99th percentiles of this distribution.
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Discussion

We show that proteomic profiling of urine samples may offer a
noninvasive way to differentiate BKVAN from other conditions as
has been shown for several other diseases (8—12,28-30). All stud-
ied patients with BKVAN had significant viremia, viruria, and
biopsy-proven nephropathy at the time of sample collection. The
proteomic profile of the patients with BKVAN had similarities
with the AR pattern. However, we were able to detect several
peaks that were differentially expressed in the BKVAN group
compared with both the AR and stable function groups.

Differentiation of BKVAN from AR can be challenging both
at histologic and molecular levels. A recent study by Mannon et
al. (31) showed significant similarity of transcriptional expres-
sion of molecules associated with inflammation and fibrosis
between BKVAN and AR. We found a similar overlap in the
proteomic profiles of BKVAN and AR. This probably is due to
the similarity of the inflammatory response and leakage of
inflammation related small molecular weight proteins into
urine in both conditions. However, several differentially ex-
pressed proteins were identified in the urine of patients with
BKVAN in our study. Our studies can be an initial but prom-
ising phase in noninvasive biomarker development for
BKVAN.

The influence of viral infections on the urine proteomics has
not been studied previously in a systematic manner, and no
previous studies have been reported for BKVAN. However,
bacterial urinary tract infection (UTI) reportedly can have a
unique proteomic profile that can be different from AR (15,16).
Schaub et al. (15) were able to differentiate urine samples (n =
5) of kidney transplant patients with UTI from both AR and
stable transplant samples using SELDI. Another study also
showed the proteomic profiles of five of seven UTI samples
were different from control and AR samples (16). In our stud-
ies, some of the samples also were positive for CMV, HHV-6, or
adenovirus. These samples did not seem to have any different
or additional peaks that could be attributed to presence of the
additional virus besides BKV. Because the progression of dis-
ease that is associated with BKV generally is less aggressive (32)
as compared with bacterial infections, development of nonin-
vasive monitoring methods for BKV infection may be a clini-
cally relevant and useful approach.

One of the advantages of SELDI is that it is inexpensive and is
suitable for screening a large number of samples. However, this
technique has some perceived inherent disadvantages. One of the
major issues with SELDI is its relative lack of reproducibility, at
least in different centers. However, in our studies, we found
excellent reproducibility of the proteomic profiles when the ex-
periments were repeated on approximately 30% of the samples
after 3 mo. The reasons underlying the variable results of different
centers may be due to different sample-processing protocols or
approaches to the data analysis. Another disadvantage of SELDI-
MS-TOF has been that it does not offer easy identification of the
biomarker candidates. Therefore, studies with larger numbers of
samples followed by peptide identification and immunologic as-
say development may be warranted.

Although no previous studies on BKVAN urinary proteom-
ics are available, there are several reports now on urinary
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proteomic profiling to differentiate patients with AR from sta-
ble patients, as summarized in Table 6 (13-17). Schaub et al. (33)
also recently showed that cleaved B2-microglobulin (11.731 kD)
may be a potential marker for tubular injury in AR. The cleav-
age products were seen in urine proteome as three separate
peak clusters (5.270 to 5.550, 7.050 to 7.360, and 10.530 to 11.100
kD). However, in other studies, including ours, the most sig-
nificant peaks or peak clusters that differentiated patients with
AR from stable transplant patients were different from these
peaks (13,14,16,17). We found some similarities in the pro-
teomic profile of our stable transplant patients and patients
with AR compared with some of the other studies as shown in
Table 6. The reasons underlying the different results of these
studies probably are multifactorial. Urine is a highly complex
mixture of various solutes, and its composition is influenced by
diet, hydration, smoking, medication etc. We aimed to study
the different clinical syndromes using urine samples that typ-
ically would be obtained in a standard clinical setting. We did
not consider dietary factors or medications that are difficult to
control. Besides these clinical variables, protein chip type and
normalization approaches can be other potential confounding
factors. In our study, the urine samples were normalized by
loading an equal amount of protein. This same method has
been used in some other studies (10,17).

The statistical analyses, including univariate and multivari-
ate testing, of our data have shown intriguing results. Univar-
iate analysis evaluates the ability of peaks to discriminate be-
tween two conditions, and several such peaks were identified.
However, the limitation of this analysis is that peaks are ana-
lyzed in isolation. A much better discriminative model possibly
can be constructed if several peaks are analyzed together.
Therefore, to analyze the multivariate discriminative potential
of various peaks, we evaluated various statistical prediction
models: SVM, CART, and RF (22-24). In addition, the SVM
model was combined with two feature selection strategies that
aimed to prefilter peaks before classifiers were learned, thereby
reducing potential threat of overfit. Using this approach, we
found that SVM modeling of the top 100 peaks provided the
best discrimination between BKVAN and AR using the
IMAC30 data set. However these results come with a caveat,
because one potential weakness of our study is that the sample
size is not large. The various disease-prediction modeling al-
gorithms may have limited utility in analyses of a data set of
our sample size and also of others published before this study
(10-12,14). Given these limitations, our analyses of SELDI pro-
file data can be interpreted only to suggest that there is a
diagnostic signal for BKVAN versus AR or controls in the
SELDI analyses performed even on the limited sample size of
our study. Our interpretation is reinforced further by the non-
parametric PACE analysis (27), which also suggested that the
potential diagnostic signal that was observed in patient data is
significantly different from randomly reassigned data because
of the marked difference of the ACE from the MACE and the
99th percentiles of error distribution curves. However, all of
our analyses were based on a limited sample size, and our
results on the sensitivity and the specificity of the various
algorithms should be interpreted with caution. A true assess-
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Table 6. Summary of the recent studies reporting proteomics biomarker candidates differentiating patients with
acute AR and stable graft function and patients with various types of cancer from healthy individuals®

Top Classifiers (kD)

Author (Reference) Method (Chip)/Sample in AR or Type of Cancer Sensitivity (%) Specificity (%)
Proteomics in acute
rejection
Clarke et al. (13) SELDI (IMAC-3, H4) 6.5,6.6,6.7,7.1,134 82 100
urine
O’Riordan et al. (14)  SELDI (H50, Q10, 2.003, 2.8036, 4.7563, 5.8724, 90.5 to 91.3 77.2 to 83.3
CM10, IMAC30) urine  6.9906, 19.0188, 25.6657
Schaub et al. (15) SELDI (NP20) urine 5.270 to 5.550, 7.050 to
7.360, 10.530 to 11.100
Wittke et al. (16) CE-MS urine 1.0276, 1.0316, 1.1686,
1.6979, 1.7078, 1.8110,
1.8138, 2.0789, 2.1211,
2.8159, 2.8389, 3.2402,
3.3596, 3.4821, 3.5161,
8.0523
Jahnukainen et al. SELDI (CM10, 4.755, 6.245, 6.440, 7.672, 56 to 78 63 to 81
(this study) IMAC30) urine 8.012, 8.230, 9.636, 9.870,
10.067, 10.569, 16.918
Proteomics in cancer
Vlahou et al. (11) SELDI (SAX2)/urine Bladder cancer 87 66
Rogers et al. (10) SELDI (WCX2)/urine  Renal cancer 75 60 to 81.8
Vlahou et al. (12) SELDI (SAX2, Ovarian cancer 84.6 80

IMAC)/urine

“SELDI, surface-enhanced laser desorption/ionization.

ment of sensitivity and specificity of the SELDI technique and
the various models tested in this report cannot be determined
until an independent validation set that is derived from another
set of patients is assessed. Our results, therefore, may provide
the basis for development of noninvasive marker tests for
BKVAN if further validation studies on independent data sets
could confirm our observations.

Conclusion

Proteomic marker(s) profiles, together with plasma and urine BKV
PCR and clinical information, may help in making differentiation of
BKVAN from AR in a noninvasive manner. Histologic verification of
BKVAN probably will continue to be required for the foreseeable
future, but it is likely that proteomic biomarkers could be used in
deciding when a biopsy is necessary. Further studies on a larger
number of patients are needed to validate our findings and to detect
the identity of the significantly different peaks to develop robust,
noninvasive methods for BKVAN diagnostics.
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