Planning with macro-actions: Effect of initial
value function estimate on convergence rate of
value iteration.

Milos Hauskrecht
Department of Computer Science, Box 1910
Brown University, Providence, RI 02912
milos@cs.brown.edu

Working paper

Abstract

We investigate the use of temporally abstract actions, or macro-actions, in
speeding-up the solution of Markov decision processes. We focus on an aug-
mented MDP model that combines both primitive actions and macro-actions
and was shown empirically to speed-up the convergence of value iteration rou-
tines under the proper choice of macro-actions. We show that the convergence
rate of value iteration methods for this model is sensitive not only to the choice
of macro-actions but also to the value function estimate used to initialize the
procedure. The theoretical result is demonstrated also experimentally on a
simple robot maze navigation problem.

1 Introduction

Complex sequences of actions or macro-actions have been used in planning in deterministic
domains for some time [6, 12, 11] and they have been proven usefull in many applications.
The ability to extend the idea to Markov Decision Processes (MDPs) is crucial for domains
that cannot be modeled deterministically and that require a stochastic model of the dynamics.
Robot navigation, with precompiled procedures to handle obstacles in the environment, or
medical treatment planning with higher level treatment protocols are typical examples. In
general any procedure or program involving multiple actions and spanning multiple time steps
corresponds to a macro and requires an appropriate model.

Integrating programs or macro-actions into the decision process is a difficult task given that the
execution of different macro-actions may extend over different periods of time. To deal with this
problem, Precup, Sutton and Singh [17, 15, 16] have developed multi-time models and applied
them to planning with MDPs. The new framework allows us to represent uniformly actions on
different time scales, as well as, to apply standard problem-solving procedures developed for
MDPs, including value and policy iteration [1, 10].

There are only a few reasonably direct ways in which macro-actions can be applied to solve
MDPs. Two of them are most common. First, macro-actions can be combined with primitive

actions to form an augmented MDP model. This model has been studied extensively in [17, 15,
16, 8, 9]. The second model works with macro-actions only and allow one to reduce the number
of states of the underlying MDP to states connected by macro-actions. This model is called an
abstract MDP model (after [9]) and was studied in [7, 9, 8, 14]. The abstract model is suitable
for hierarchical methods (see e.g. [9]) and provides an alternative to various approximation
methods for solving large MDPs [5, 2, 4, 3]. In our work we focus our attention solely on the
augmented model that works with both primitive actions and macro-actions.

Precup, Sutton and Singh [15, 16] demonstrated empirically the advantage of adding macro-
actions to the original model by speeding-up the convergence rate of value iteration when a
good set of macros is used. ! However this improvement is not always guaranteed and this also
in the case when only the optimal macro-action is added to the model. In this paper we show
that the improvement in the convergence rate is sensitive to the value function estimate used
to initialize value iteration. More specifically, we prove that for some initial value functions the
convergence rate of the value iteration for the model with additional macro-actions is always
dominated by the original model without macro-actions. The result provides first theoretically
backed insight on various tradeoffs involved in planning with a model augmented with macro-
actions. The effect of the initial value function estimate on the convergence rate of value
iteration is demonstrated and supported by experiments on a robot maze navigation problem,
presented at the end of the paper.

2 Model of Temporally Abstract Actions for MDPs

2.1 Markov Decision Processes

A Markov decision process is a 4-tuple (S, A, T, R) where: S is a finite set of states; A is a finite
set of actions; T is a transition model T': S x A x S — [0, 1], such that T'(s, a,) is a probability
distribution over S for any s € S and a € A; and R: S x A — IR is a bounded reward function.
Intuitively, T'(s, a, s’) denotes the probability of moving to state s’ when action « is performed
at state s, while R(s,a) is the immediate reward associated with action «a in s.

Given an MDP, the objective is to construct a policy that maximizes expected accumulated
reward over some horizon of interest. We focus on infinite discounted horizon problems, where
we adopt a policy maximizing E(Z;’io B - r'), where r' is a reward obtained at time ¢ and
0 < B < 1is a discount factor. In such a setting, we restrict our attention to stationary policies
of the form 7 : § — A, with n(s) denoting the action to be executed in state s. The value of
the optimal policy satisfies [1]:

V*(s) = max

(s,a —|—BZ s,a,8) - V*(s)

s'eS

The equation could be rewritten also as V* = HV*, where H : B — B denotes a value function
mapping, and B : S — R is a set of bounded real valued functions.

A number of techniques for constructing optimal policies exist. An especially simple algorithm
is value iteration [1]. In value iteration we produce a sequence of value functions V" by starting
from an arbitrary V°, and defining

VI (s) = max | R(s,a) + 8 Y T(s,a,5) - VI(s) | = (HV)(s). (1)

s'eS

The sequence of functions V* converges to V* in the limit. Each iteration is known as a Bellman
backup. After some finite number n of iterations, the choice of maximizing action for each s
forms an optimal policy @ and V" approximates its value.

!Obviously the benefit from adding macro-actions is diminished when bad macro-actions are used.

Room 1 Room 2

Room 3 Room 4

Figure 1: (a) A four-room example. (b) Peripheral states for a room partitioning.

2.2 Macro-actions

Macro-actions allow us to model complex sequences of action, for example, typical or stan-
dardized policies or programs. To illustrate this assume a simple robot navigation problem in
Figure 1(a), in which the robot moves in four compass directions. In addition to the basic move
actions a programmer may have provided a macro (or program) that enables the robot to exit
one of the rooms through a particular door. Such a macro consists of multiple steps involving
multiple primitive move actions.

Macro-actions can be modeled by different means. For example, macro-actions can be repre-
sented as programs with arbitrary termination conditions as suggested by Precup, Sutton and
Singh [17, 15, 16] or using finite state machine representation and its hierarchical extensions
as proposed by Parr [13]. In our work we assume a simpler macro-action model based on
Hauskrecht et al. [9], in which every macro-action is represented as a local policy restricted to
some region of a state space. Formally, our model relies on a region-based decomposition of an

MDP as defined in [4, 9].

Definition 1 A region-based decomposition II of an MDP M = (S, A, T, R) is a partitioning
IT={S1,---, S} of the state space S. We call the elements S; of I1 the regions of M. For any
region Sy, the exit periphery of S; is
XPer(S;)={s' € §—5;:T(s,a,5") >0 for some a € A,;s € 5;}.
The collection of all peripheral states is denoted
Perpp(S) = Ui { XPer(S;) : i < n}.

Figure 1(b) shows the set of peripheral states obtained if we partition the problem of Figure 1(a)
into the four regions corresponding to different rooms.

Definition 2 A macro-action for region S; is a local policy m; : S; — A.

A macro-action is simply a local policy defined for a particular region 9;. Intuitively, this policy
can be executed whenever an agent enters or is in the region and terminates when the agent
leaves the region (if ever). Definitions in [15] or [13] are more general and can use arbitrary
starting and termination conditions, and allow also non-Markovian policies.

The main problem with integrating macro-actions into the MDP is that macro-actions when
executed can extend over different periods of time. The key insight of Precup, Sutton and Singh
[17, 15, 16] is that one can treat a macro-action as a primitive action in the original MDP if
one has an appropriate reward and transition model for the macro. They propose the following
method of modeling macros.

Definition 3 A discounted transition model T;(-, m;,-) for macro m; (defined on region S;) is
a mapping T; + S; x XPer(S;) — [0, 1] such that

Ti(s,mi,s') = E(37'-Pr(s”" =5 | s =s,m)),

where the expectation is taken with respect to time T of termination of m;. A discounted reward
model R;(-,m;) for m; is a mapping R; : S; — IR s.t.

Ri(s,m) = E-(D>_ B'R(s', mi(s")) | 8 = 5, m),
t=0

where the expectation is taken with respect to completion time T of w;.

The discounted transition model specifies the probability of leaving .S; via a specific exit state,
similarly to a standard stochastic transition matrix, with one exception: the probability is
discounted according to the expected time at which that exit occurs. As demonstrated in
[15, 16], this clever addition allows the transition model to be used as a normal transition
matrix in any standard MDP solution technique, such as policy or value iteration. 2 The
reward model is similar, simply measuring the expected accrued reward during execution of ;
starting from a particular state in S;.

3 Augmented MDP

Suppose we are given an MDP M and a set of macros defined for each region 5; induced by some
state space partitioning II. There are only a few reasonably direct ways in which macro-actions
can be applied to solve M. In our work we focus on augmented MDP model [17, 15, 16, 8, 9],
denoted M’, constructed by extending the action space A using a set of macro-actions, assuming
that macro models are used to determine transitions and rewards associated with these new
actions. An alternative model with macro-actions is abstract MDP [7, 9, 8, 14] that works with
macro-actions and peripheral states only. This allows one to reduce significantly the size of the
state space compared to M.

Although the augmented model uses discounted transition matrices for macro-actions and thus
it is not a classical MDP, it can be still solved using standard methods, such as value iteration.
Because all base level actions (those in A) are present, the policy found is guaranteed to be
optimal. Furthermore, the presence of macros may enhance the convergence of value iteration,
as demonstrated in [15, 16]. 3 This is because the single “application” of a macro can propagate
values through a large number of states and over a large period of time in a single step. However,
the potential for enhanced convergence is not always guaranteed and it is sensitive to the initial
value function. We will elaborate this issue next.

At first sight the planning with as augmented MDP is the same as for the original MDP, that is
one can simply treat macroactions as any other actions and apply value iteration starting from
an arbitrary initial value function. However the main difference is that primitive actions can be
subsumed by macro-actions and that action choices are not necessarily alternatives. This can
lead to situations in which optimal macro is never preferred and thus never used for speeding
up the computation, contrary to our intention. To show that that value iteration for augmented
MDPs can become inferior we provide the following theorem.

Theorem 1 Let M and M' be MDPs such that M’ differs from M only in additional actions,
te. Apr C Appr. Then Hy V< Hyp'Voholds for an arbitrary value function V, that s, the
value function mapping for the augmented MDP model always upper-bounds the value function
mapping for the original MDP.

Proof The value function for state s obtained after the update is computed as

VH(s) = max@* (s, a),

2Qur definition of the discounted transition model is consistent with Equation 1, while Precup,
Sutton and Singh fold the discount factor into the transition model.

3We note that these savings do not account for the possible overhead associated with generating
macros and constructing appropriate model for each macro.

where A is a set of actions and Q% (s,a) is an action-value function

Q% (s,a) = R(s,a) + Z T(s,a,s)V(s).
s'eS
Then if M and M’ differ only in additional actions, i.e. Ay C Apr, regardless of transitions
and rewards associated with additional actions, it holds
max QT (s,a) = HyV(s) < max Q1 (s,a) = Hy/V(s),
a€Aps AEA
or in other words value function mapping Hpys» upper-bounds Hyy. O

Note that the above theorem is universal and holds for any MDP including those with or without
macroactions. The result can be used to show that value iteration (VI) for an MDP with both
primitive and macro actions is inferior (slower) when initialized from the upper bound.

Theorem 2 Let M’ be an augmented MDP with both primitive and macro actions and M be
an MDP with primitive actions only. If value tteration for both M and M’ starts from the
initial upper bound Vo > V*, then the value iteration for M’ converges at equal or slower rate
than the value iteration for the base model M and thus it is inferior.

Proof A key feature of an augmented MDP is that it converges to the same fixed point
solution as the original MDP, i.e. V* = HyV* = HyV*. Also, by theorem 1, the value
function mapping H s upper-bounds Hpys. Then for any initial value function Vp > V* holds
V* < HyVo < Hp'Vo. As both Hypr and Hpy are also isotone we can write V* < HJ%/IVO <
H32,,V, for two steps. Extending the result into i steps we get V* < Hi,; Vo < H;, V. Therefore
a value function obtained using VI for the MDP with primitive actions only is better (closer) to
the optimal value function after ¢ steps. As the model augmented with macroactions requires
that at every step the Q-value for every macroaction is evaluated, the method is clearly inferior
and leads to slower running times. 0O

The theorem shows that one should not blindly apply value iteration to MDPs with macroac-
tions as the potential benefit and intended speed-up is not guaranteed. To avoid the suboptimal
behavior one should always start value iteration from the initial lower bound. This choice guar-
antees that macroactions can be useful and improve the convergence.

Theorem 3 Let M’ be an MDP with both primitive and macro actions and M be an MDP with
primitive actions only. If value iteration for both M and M' starts from the initial lower bound
Vo < V*, then the convergence rate of value iteration for M’ is no slower than the convergence
rate for M.

Proof The proof is similar to the previous case. Starting from the lower bound Vo < V* and
knowing that Hs and Hpys are isotone contractions and that Hpysr upper bounds Hyy, it must
hold Hi,; Vo < Hjy; Vo < V*. Therefore a value function obtained using VI for M’ converges to
the optimal value function no slower than VI for M. 0O

Intuitively, longer and better macroactions influence the convergence of value iteration most.
This is because they tend to propagate value function changes faster and improve the lower
bound value function in larger steps. Thus they are more likely to provide the optimizing
Q-value from among candidate actions and to determine the resulting value function value.
However note, that starting from the appropriate bound does not neccesarily imply that the
actual speed-up (in terms of running time) will be always achieved. This because when one
considers a larger number of macro-actions in every state, the slowdown resulting from the
computation of updates for every macro could outweight the benefit of the improved conver-
gence.

4 Experimental results

To demonstrate the computational savings made possible by using macro-actions in planning
tasks, we have performed experiments on the simple navigation problem in Figure 2. The

N ¢

Figure 2: Test problem. Shaded squares denote locations with higher cost, patterned squares
represent areas in which moves are more uncertain, shaded circles denote absorbing states with
a finite positive cost, and G stands for a zero cost goal state.

agent can move in any compass direction to an adjacent cell or stay in place. The move actions
are stochastic, so the agent can move in an unintended direction with some small probability.
The objective is to maximize the expected discounted rewards (costs are modeled as negative
rewards) incurred by navigating the maze, with each state, except the zero-cost absorbing goal
state, incurring some cost. The costs and transition probabilities are not uniform across the
maze.

We compared the results of value iteration for both the original MDP and the augmented
MDP, the latter using a set of additional macros for every room in the problem. The macros
were generated automatically using a simple heuristic strategy described in [9] that results in
| X Per(S;)|+ 1 macros for every region S;: one macro per exit state pressing the agent towards
that exit, plus a ’stay-in’ macro pressing the agent not to move out of the region.

Figure 7?7 shows how the estimated value (maximal expected reward) of a particular state
improves with the time (in seconds) taken by value iteration on both models. When the initial
value function estimate is a lower bound the augmented MDP leads to faster convergence of
the value function. This is because of the ability of macros to propagate value through a
large number of states produces large changes in the value function in a single iteration step,
overcoming the increased number of actions. Note, however, that when the initial estimate of
the value function is an upper bound, the augmented MDP actually performs worse than the
original MDP, as proved earlier. The average time (in seconds) taken per value iteration step
in this example is 0.045 for the original MDP, 0.12 for the augmented MDP, which reflects the
increased action space of the augmented MDP model, as expected.

5 Conclusion

The convergence rate of value iteration for MDPs can be boosted by adding a small set of
good macro-actions, representing sequences of primitive actions or programs. This behavior
was demonstrated empirically in [15, 16]. However, in our work we showed that the speed-up in
convergence rate of value iteration in this model is not guaranteed and that the rate does not
depend only on the quality of macro-actions used but it is also sensitive to the value function
used to initialize the procedure. We proved that when the iteration starts from the upper bound
of the optimal value function the augmented MDP model is always inferior to the original MDP
with regard to convergence rate. This provides a first theoretically backed insight on various
tradeoffs involved in planning with an augmented MDP model. The effect of sensitivity of the
augmented MDP model to the initial value function estimate was demonstrated also empirically
on a simple robot maze naviagtion problem.

An interesting and open question related to our result is the effect of initial value function
estimate on reinforcement learning (RL) with both primitive actions and macro-actions. An
important issue here is the fact that the upper bound value function estimate, which causes

0 T 0 N
20 | o
40 | 0 |
5 60 |-} s 60 -
B B
2 2
3 i 2
) -80 [} -80
3 i]
> i >
-100 -100
-120 base level MDP —— b -120 base level MDP ——
augmented MDP ------ augmented MDP ------
-140 1 -140 |-
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time time

Figure 3: Solution quality versus time for the augmented and original MDP models. Results
with a good initial value function estimate (w.r.t. the augmented MDP) are shown on the left.
Results for a poor initial estimate are on the right. In the latter case, the augmented MDP
converges more slowly than the original MDP.

the slowdown for MDPs, promotes exploration when applied in RL settings. Thus there are
two opposite forces influencing the convergence to the correct value function, both depending
on the initial value function estimate. Investigation of these remains an open question though
our preliminary results indicate that the macro-action effect dominates.

References

[1] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957.

[2] D. P. Bertsekas and J.. N. Tsitsiklis. Neuro-dynamic Programming. Athena, 1996.

[3] T. Dean and R. Givan. Model minimization in Markov decision processes. AAAI-97,
pp-106-111, Providence, 1997.

[4] T. Dean and S.-H. Lin. Decomposition techniques for planning in stochastic domains.
IJCAI-95, pp.1121-1127, Montreal, 1995.

[6] R. Dearden and C. Boutilier. Abstraction and approximate decision theoretic planning.
Artif. Intell., 89:219-283, 1997.

[6] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized robot plans. Artif.
Intell., 3:251-288, 1972.

[7] J. P. Forestier, P. Varaiya. Multilayer control of large Markov chains. IEEE Trans. on
Aut. Control, 23:298-304, 1978.

[8] M. Hauskrecht. Planning with temporally abstract actions. Technical report, CS-98-01,
Brown University, 1998.

[9] M. Hauskrecht, N. Meuleau, C. Boutilier, L. Kaelbling, and T. Dean. Hierarchical Solution
of Markov Decision Processes using Macro-actions. In Proceedings of the 14-th Conference
on Uncertainty in Artificial Intelligence, pp. 220-229, 1998.

[10] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[11] R. Korf. Macro-operators: A weak method for learning. Ariif. Intell., 26:35—77, 1985.

[12] S. Minton. Selectively generalizing plans for problem solving. IJCAI-85, pp.596-599,
Boston, 1985.

[13] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In M. Mozer,
M. Jordan, T. Petsche, eds., NIPS-11. MIT Press, 1998.

[14] R. Parr. Hierarchical control and learning with hierarchies of machines. Chapters 1-3,
under preparation, 1998.

[15] D. Precup and R. S. Sutton. Multi-time models for temporally abstract planning. In M.
Mozer, M. Jordan, and T. Petsche, eds., NIPS-11. MIT Press, 1998.

[16] D. Precup, R. S. Sutton, and S. Singh. Theoretical results on reinforcement learning with
temporally abstract behaviors. 10th Eur. Conf. Mach. Learn., Chemnitz, 1998.

[17] R. S. Sutton. TD models: Modeling the world at a mixture of time scales. In ICML-95,
pp-531-539, Lake Tahoe, 1995.

