Hierarchical Solution of Markov Decision Processes using Mcro-actions

1

Milos Hauskrecht, Nicolas Meuleau
Leslie Pack Kaelbling, Thomas Dean

Computer Science Department, Box 1910

Brown University, Providence, RI 02912
{milos, nm, Ipk, tld@cs.brown.edu

Abstract

We investigate the use of temporally abstract
actions, or macro-actions, in the solution of
Markov decision processes. Unlike current mod-
els that combine both primitive actions and
macro-actions and leave the state space un-
changed, we propose a hierarchical model (using
anabstract MDB that works with macro-actions
only, and that significantly reduces the size of the
state space. This is achieved by treating macro-
actions as local policies that act in certain regions
of state space, and by restricting states in the ab-
stract MDP to those at the boundaries of regions.
The abstract MDP approximates the original and
can be solved more efficiently. We discuss sev-
eral ways in which macro-actions can be gen-
erated to ensure good solution quality. Finally,
we consider ways in which macro-actions can be
reused to solve multiple, related MDPs; and we
show that this can justify the computational over-
head of macro-action generation.

Introduction

Craig Boutilier
Department of Computer Science
University of British Columbia
Vancouver, BC V6T 174, Canada
cebly@cs.ubc.ca

common in classical planning—for instance, through the
use ofmacrog[8, 16, 13] or plan repair strategies [15]—its
application in stochastic settings is less common. Siétabl
techniques of this type could lead to the amortization of
solution costs over a large number of problems, and the
ability to solve future problem instances quickly, which is
critical to on-line reasoning.

One of the few models to deal with solution reuse within
the MDP framework is the Skills model of Thrun and
Schwartz [24], which attempts to learn how to reuse policy
fragments (oskills) for different tasks. Another is found

in the work of Sutton and his colleagues [23, 20, 21], who
have developed models afiacro-actionsfor MDPs that
can be reused to solve multiple MDPs when objectives (or
goals) change. In particular, macros are viewed as “local”
policies that are implemented until some termination con-
dition is met, at which point a new macro (or any other ac-
tion) can be applied. Key to the success of this framework
is the ability to construct models of macro-actions that al-
low them to be treated as if they were ordinary actions in
the original MDP.

In this paper, we continue the investigation of the use of
macros in MDPs; specifically, we focus on the problem of
planning with macro-actions addressed by Precup, Sutton
and Singh [21]. Our main aim is the development of a dif-
ferent model for planning with macros that deals with some

Markov decision processes (MDPs) [11, 22] have proverpf the computational problems associated with this earlier
tremendously useful as models of stochastic planning anthodel (thePSS mod#g! In particular, while the PSS model
decision problems. However, traditional dynamic pro-allows macros designed for one MDP to be applied to a re-
gramming remains computationally intractable for practi-lated MDP, it still relies on explicit dynamic programming
cal problems, requiring time polynomial in the size of the over the state space of the related MDP (and a larger ac-
state and action spaces, but where these spaces are gert@n space). Thus it does nothing to alleviate the problem
ally too large to be explicitly enumerated. Considerableof large state spaces. Furthermore, the use of macros is not
research has been directed toward the solution of Markoguaranteed to reduce the time required to find an optimal
decision processes (MDPs) with large state and actiosolution.

spaces. These include function approximation [2], reach

Wi t in Section 2ta hical modefor th f
ability analyses [5] and aggregation techniques [7, 3, 4]. © present In Section sagrarcnical Modetor e Use o

macro-actions that specifically addresses the difficultfes
Despite these advances, little attention has been pai@to tHarge state and action spaces. We take a macro to be a local
reuseof policies or value functions generated for one MDP policy, defined over a region of state space, that terminates
in the solution of a related MDP. While such reasoning iswhen that region is left. We show how astract MDP

can be constructed that consists only of states that lieen thzon of interest. We focus oimfinite horizon, discounted
borders of adjacent regions, and whose solution determinegecision problems, where we adopt a policy that maximizes
a policy that consists of macrasly. Hierarchical models E(3",-, 8'-r'), wherer! is a reward obtained at timieind
similar to the one we propose have been investigated by < 5 < 1isadiscountfactor. In such a setting, we restrict
Forestier and Varaiya [9], and recently by Parr [18, 19]. our attention to stationary policies of the form S5 — A,

Two limitations of this model are then addressed. The ﬁrs'EMth m(s) den(_)tmg the action to be exe_cuted in statéhe
.) : . value of a policyr can be shown to satisfy [11]

relates to solution quality. Since the policy generated by
solving the abstract MDP can contain only macros, certain

behaviors cannot be realized, thus the resulting policy may w(s) = R(s,m(s)) + 8 Z T(s,m(s), 1) - Vr (2)-

be suboptimal. In Section 3, we identify conditions un- tes

der which the set of macros that comprise the a(_:tlon SPacg policy r is optimal if Vo(s) > Vi(s) foralls € §
of the abstract MDP give rise to anoptimal policy for g policiest’. Theoptimal value function’™ is the value
the original MDP. We then consider both systematic and,ntion for any optimal policy.

heuristic techniques for macro generation that ensure high
quality behavior. A number of techniques for constructing optimal policies

exist. An especially simple algorithmvslue iteration[1].

The second limitation relates to solution time, specificall \ye produce a sequence of value functiéfis by starting
the time needed to generate a set of good macros. Thisy ., an arbitrary’°, and defining

generally requires that we perform some form of dynamic
programming within specific regions of the state space. Vitl(s) = R T H-Vi 1
Since our regions cover the state space and macros should (5) 1516%{ (s,0) + ﬁz (5,a,%) M} @
capture a variety of control behaviors in different regions

macro generation can become computationally more intenthe sequence of functions converges td’* in the limit.
sive than solving the original MDPThis problem can be gach teration is known asBellman backup After some
diminished if we can generate macros off-line for fast on-finjte number of iterations, the choice of maximizing ac-

line reasoning, or reuse them to solve multiple problems. IRjon for eachs forms an optimal policyr andV™ approxi-
Section 4, we briefly analyze the requirements for feasiblgnates its value.

macro reuse and describe a hybrid model in which changes
in the original MDP (either in the reward function or the
system dynamics) lead to an expansion of some parts

th_e abstract M[_)P' Wh_'Ch can then be solved. Sinceftpis Sutton [23] has argued that it is crucial to be able to model
brid MDP consists primarily of abstract states and macro-y,ppg 4t multiple time scales. The ability to determine
actions, it can be solved effectively and provide for fast,i, 4 \alue—within an underlying MDP—of a complex se-
on-line response to changes in problem specification. Thauence of actions or program is important in, say for ex-

use of_macros f_or the on-line solutio_n of ml_JItipIe related ample, robot programming. In the navigation problem
MDPs is the main advantage of our hierarchical model. illustrated in Figure 1(a), a programmer may have provided
a program (or partial policy) that enables the robot to exit
2 A Hierarchical Model of Macro-actions one of the rooms through a particular door. Integrating such
a partial policy into the decision process is a difficult task
given that: (a) the robot usually “commits” to the execution
of this program; and (b) the program extends over some

A (finite) Markov decision procesis a tuple(S, A, T, R) period_ of time. To deal with this problem,_ Erecup, Sutton
where: S is a finite set of states{ is a finite set of actions; and Singh [23, 20, 21] have developeullti-time models

T is a transition distributiofi : § x A x § —[0,1],such ~ and applied them to planning with MDPs. In what fol-
that7'(s, a,) is a probability distribution oves for any lows, we draw heavily on the use of these multi-time mod-_
sec Sanda € A: andR : S x A — Ris a bounded ©ls- Parr and Russell [17] have proposed a related model in
reward function. IntuitivelyZ'(s, a, w) denotes the proba- Which a (partial) policy is modeled using a finite-state ma-
bility of moving to statew when actionu is performed at chine. These policies are then “abstracted” hierarchjcall

states, while R(s, a) is the immediate reward associated and treated as primitive actions to be invoked by higher-
with actiona in s. level behaviors.

Given an MDP, the objective is to construcpalicy that ~ While suchtemporally abstract actionsor macro-actions

maximizes expected accumulated reward over some horfré useful formodeling constrained behavior—such as par-
tially specified policies—we also view them as a useful tool

\We note that aggregation and approximation techniques cathat allows theeuseof a solution generated for one MDP
be used within a region, though we do not address this issee he in the solution of another. However, this perspective casts

tes

O%.Z Macro-actions and their Models

2.1 Markov Decision Processes

Y G Figure 1(b) shows the set of peripheral states obtained if we
N A . e partition the problem of Figure 1(a) into the eleven regions
° ° ° corresponding to different rooms.
ONEOES oo A macro-actionis simply a local policy defined for a par-
NN : : : : o ticular regions;. Intuitively, this policy can be executed
———— | ° ° ° whenever an agent is in the region and terminates when the
agent leaves the region (if ever).

Definition 2 A macro-actiorfor region.S; is a local policy
T . Sz — A.

Figure 1: (a) Test prob'em Maze 121. Shaded squares d@ur definition is much more SpeCifiC than that of PSS,
note locations with higher cost, patterned squares reiplreseWhO define macros using arbitrary starting and termination
areas in which moves are more uncertain (a move in théonditions, and allow mappings that depend on the time
intended direction is less likely). Shaded circles denbte a €lapsed or the trajectory followed since the macro action
sorbing states with a finite positive cost, G stands for a zergvas initiated. Within our framework, the starting conditio

cost goal state; (b) peripheral states for the partitioiitgy ~ for macron; would simply bes® € S; (we are in the re-
11 rooms (regions). gion) and the termination condition would be ¢ S; (we

are out of the region).

macros in a very different light. While Sutton and his col- A key insight of PSS (which finds its roots in earlier work
leagues have not explicitly considered how macros arisely Sutton [23]) is that one can treat a macro-action of this
we focus on the issues associated with the automatic geriype as aprimitive actionin the original MDP if one has
eration of macro actions. Rather than supposing a temp@n appropriate reward and transition model for the macro.
rally abstract behavior has been provided, we imagine thathey propose the following method of modeling macros.
the decision maker will be forced to deal with a number . . »

of related problem-solving episodes, and desires a set df&finition 3 A discounted transition modél (-, 7;, -) for
macros that will help solve these MDPs more quickly. ThusMacro 7 (defined on regiort;) is a mappingl; : S; x

the effort required to generate these macros (something ndtPe5:) — [0, 1] such that

considered in the PSS model) will “pay for itself” either Ti(s,mi,s') = B (' -Pr(s" =5 | =s,m)),
with decreased reaction time to changing circumstances, or 0o
with total computational savings over multiple problem in- - Z@t—l . Pr (7- =t,s'=5]s"=s, m)

stances. The Skills model of Thrun and Schwartz [24] has P

a similar motivation, though they do not address the use of . . ;
multi-time models for learned skills. Parr [18, 19] has inde where the expectation is taken with respect to tinuéter

pendently investigated the use of hierarchical models witnination ofr;. Adiscounted reward mode; (-, ;) for
. . IS a mappingk; : S; — Rs.t.
an eye toward macro generation, and has considered many

of the same problems we address here. o . 0
. . . Ri(svﬂi):ET(ZﬁR(s yTi(s7)) |57 = s, m),
Formally, our model relies on eegion-based decomposi- o

tion of a given MDP{(S, A, T, R) as defined by Dean and

Lin [6] where the expectation is taken with respect to completion

timer of ;.

Definition 1 A region-based decompositibhof an MDP The di d . del | dard hasti
M = (S, A, T, R) is a partitioningIl = {Si,--,S,} of e discounted transition model is a standard stochastic

the state spacs. We call the elements; of IT theregions transition matrix specifying the probability of leavirts
of M. For any regions;, theexit peripheryof S; is via a specific exit state given that was initiated at a spe-
' " ' cific state inside the region, with one exception: the proba-

XPer(S;) = {t € S—5; : T(s,a,t) > 0 for someua, s € S;}. bilityis discountedhccording to the expected time at which
that exit occurs. As demonstrated by PSS, this clever addi-
tion allows the transition model to be used as a normal tran-
EPenS;) = {t € S; : T(s,a,t) > 0 for somen, s € S—5;}. sition matrix in any standard MDP solution technique, such
as policy or value iteratiorf. The discounted reward model

is similar, simply measuring the expected accrued reward
during execution ofr; starting from a particular state #).

Theentrance periphergf S; is

We call elements of XPg§;) exit stategor S; and elements
of EPel(S;) entrance stateJ he collection of all peripheral
states is denoted

. . 20ur definition of the discounted transition model differs
Peri(S) = U;{EPer(S;) : i <n} = U;{XPer(S;) : i <n}. glightly from that of PSS: their transition model is obtainizy

2.3 Constructing Macro Models by standard methods, such as value iteration. Because all
base levelactions (those iM) are present, the policy so
Since we are concerned with the automatic generation ofonstructed is guaranteed to be optimal. Furthermore, the
macros, we now consider the construction of discounteghresence of macros can enhance the convergence of value
transition and reward models for macros. Issues related tReration, as demonstrated by Sutton et al. [20, 21]. This
the macro-model construction are discussed also in [19]. js due to the fact that the single “application” of a macro

Let =; be a macro defined of;. The discounted tran- Can propagate values through a large number of states and
sition probability 7 (s, 7, s') for s € S;, macror; and ~ Overa large period of time in a single step. In general, this

s' € X Per(S;) satisfies: model requires more work per iteration because of the in-
creased action space, but potentially fewer iterations. We
Ti(s,mi,s') = note that this savings does not account for the overhead as-

sociated with generating macros and constructing the mod-
els for each macro.

T(s,mi(s),s) + B Z T(s,mi(s),s")T;(s", m, 5').
s"es;

his lead i _ We also note that, depending on the initial value function

This leads td.X Per(5;)| systems of linear equations, one | geq ¢, begin value iteration, macros can actualyease

s_et for every exit state. Each system conS|stbS’p|fequa_- the number of steps required for convergence compared to
tions with|5;| unknowns. The systems can be solved eithelyq yalue iteration with primitive actions alone. Specifi-

directly or using iterative methods. Thus, the time com-
plexity of finding all transition probability parameters is on the optimal value functioki*, value iteration in the aug-

IS 13 } ; .
O(IX Per(S:)]Si[%)- mented MDP is guaranteed to require at least as many iter-
We can construct the reward model in a similar fashion. Le@tions as in the original MDP (the same holds for a lower
R;(s, ;) be the expected discounted reward for followingbound and minimization of costs). An empirical demon-
the policyr; starting at state € S;. Then we have: stration of this phenomenon is provided in next section.

cally, Hauskrecht [10] showed that¥if® is an upper bound

Alternatively, we can imaginemduced MDR M,., formed

by replacingA with 4, U ---U A,,. M, will generally be
more efficiently solvable because there are fewer actions
This defines a set dfS;| linear equations, which can be t0 consider, and convergence will be enhanced as above.
solved inO(|S;]?) time. However, because the possible behaviors one can consider

are limited to the application of these macros, there is no

Overall, the computagion_ of macro parameters takegy arantee that the resulting solution is optimal: this will
O((|X Per(S:)| + 1)|5;]") time per macro. Note that an genend crucially on the macros introduced.
overhead for generating macros (finding suitable policies

defining macros and computing their parameters) may behile these models offer some advantages, they do not use
come, in many instances’ Computationa”y more expensiv@qacros to alleviate the prOblem of state Space size. Each
than solving the original MDP problem. Thus we must method requires explicit value iteration over the statespa
carefully consider what kinds of planning situations jfysti With possibly a larger number of actions. We instead wish

Ri(s,mi) = R(s,mi(s))+8 Y T(s,mi(s),s') Ri(s', ;).

the computational effort. to solve a much smaller MDP, taking advantage of the fact
that, by committing to the execution of a macro, decisions
2 4 The Hierarchical Solution of MDPs with Macros need only be made at peripheral states, not at states that

lie strictly within a region. To capture this intuition, we
Suppose we are given an MD®, a decompositiofil, and ~ consider thehierarchical application of macro operators
a set of macrosd; = {r},---, 7'} for each regionS; within a high-level, oabstract MDP. This model is closely
associated with this partition. There are two reasonablyelated to the “landmark” technique developed by Kael-
direct ways in which these can be used to salemore bling [12] for learning policies for hierarchical stochiast

efficiently. shortest path problems.

First, we can simply add these macro-actionsMo let Definition 4 LetIl = {S,---, S, } be a decomposition of
M, denote theaugmented MDRonstructed by extending MDP M = (S, A, T, R), and letA = {4; : i < n} bea
the action space from to AU A; U---U A, assuming collection of macro-action sets, whetg = {x},---, 7'}

that macro models are used to determine transitions and r¢s a set of macros for regiof;. Theabstract MDPM' =
wards associated with these new actioh&. can be solved (s’ A’ 77, R’} induced bylT and A, is given by:

multiplying our variableT; by the constang. Our definition is

consistent with the update formula in Equation 1, while PS&u o S’ = Perp(S) = U{EPer(S;) : i < n};

a formula where the discount factor is folded into the tramsi . .

model (this requires multiplying the one-step transitioolabil- o A" = U;A; withf € A; feasible only at states €
ities by 3 before using them). EPer(S;);

Room 1 | Room 2 Once a set of macros has been provided, along with their
olo models, our hierarchical approach induces a problem with
o o a considerably smaller state space (and often a smaller ac-
o o ¢> tion space). This computational advantage comes at a price
however—the possibility of generating a suboptimal pol-
©lO icy. This is due to the fact that the abstract MDP allows
Room 3] Room 4 the decision maker to consider only a limited range of be-

haviors. Therefore it is important to ensure that the macros

Figure 2: Abstract MDP for a four-room example. Grey provided (or generated) offer a choice of behaviors that are
circles mark peripheral states of the original MDP i e Of acceptable value. We will turn our attention to this issue

states of the abstract MDP. in Section 3.

.) .. 2.5 Experimental results
e T'(s,7¥ 1) is given by the discounted transition
model forr}, for anys € EPer(S;) andt € XPer(S:); To demonstrate the computational savings made possible
T'(s,xf,1) = 0 for anyt ¢ XPer(S;); by our hierarchical approach to planning with macros, we
have performed experiments on the simple navigation prob-
lem in Figure 1. The agent can move in any compass di-
rection to an adjacent cell or stay in place. The move ac-

o) tions are stochastic, so the agent can move in an unintended
The transition and reward models required by the abstracjjrection with some small probability. The objective is to

MDP are rest‘r‘i_cted to”peripherf_;ll states and make N0 Meninimize the expected discounted costincurred by navigat-
tion of states “internal” to a region. Due to discounting in ing the maze, with each state, except the zero-cost absorb-

¥ > .
T" these definitions do not describe an MDP, but they dgg g4 state, incurring some cost. The costs and transitio
preserve the Markov properfithus, we may use dynamic probabilities are not uniform across the maze.
programming techniques to solve the abstract MDP. An

abstract MDP for a simple four-room navigation problem\We compared the results of value iteration for the original
is shown in Figure 2. Regions are formed by the roomdVIDP, the augmented MDP and the abstract MDP, the latter
and the peripheral states make up the abstract MDP. We awo formed using the rooms in the problem as regions. The
sume macros exist that can take the robot out of any rooracros were formed heuristically using the simple strategy

through any door, accounting for the connectivity of thedescribed in Section 3.2, givind Per(5;)| + 1 macros
abstract MDP. for every regionS;. Figure 3 shows how the estimated

i _ i value (minimal expected cost) of a particular state impsove
Notice that the abstract MDP induced by a given decompoy,ith the time (in seconds) taken by value iteration on each
sition can be substantially smaller than the original MDP, ¢ iha three models. When the initial value function es-
especially if the problem can be decomposed into @ NUMgote is an upper bound, both the augmented MDP and
ber of regions with relatively small peripheries—thisie th ¢ ghsiract MDP lead to faster convergence of the value

case in our running example, and in the types of domaingncion. In the augmented MDP, the ability of macros to
considered in [20, 21]. propagate value through a large number of states produces

We call a policyr’ : S’ — A’ for M’ that maps periph- large changes inthe value function in a single iteratiop,ste
eral states to macro-actionsracro-policy Such a policy —overcoming the increased number of actions. Note, how-
7, when considered in the context of the original MBR ever, that when the initial estimate of the value functioa is

defines anon-Markovianpolicy 7; that is, the choice of lower bound, the augmented MDP actually performs worse
action at a state can depend on previous history. In par- than the original MDP. These effects would be reversed if
ticular, the actiom—(s) to be executed at some state S; we were maximizing rewards instead of minimizing costs.

will generally depend on the state by which.S; was most The abstract MDP has significantly reduced state and ac-
recently enteredr(s) = 7’ (s.)(s).* tion spaces sizes. Although in general, macros can lead
—— N _ to suboptimal value functions (and subsequently policies)
Specifically, the probability of moving from any entrance jn our example, the abstract MDP produced nearly optimal
2tuastehit:toar?/ exit state for a given macro is independent ofi-prev policies (and did so very quickly). The average time (in
“Note th.atthe macro-policy does not dictate the actionsde ta seconds) taker! per value iteration step in this example is
if the process begins in an internal statef some regions;. To ~ 0.045 for the original MDP,0.12 for the augmented MDP,
deal with this, we can use a greedy macro choice with regard t@nd0.019 for the abstract MDP. This reflects the increased

the “intermediate macro modelsf?; andZ;, and the values of action space of the augmented MDP and the reduced action
the abstract MDP a&Per(.S;). This is required only for the initial

state, all other decisions are made at peripheral statégeiati- generate a markovian policy for all states in the region (6§
stract MDP. Note that the greedy approach can be applied@lso for details).

e R'(s,7F) is given by the discounted reward model for
¥, for anys € EPer(S;).

T T T
base level MDP— | 140 | base level MDP— |
augmented MDP-—---- augmented MDP------
abstract MDP------- abstract MDP-------
120
100 -
c c
2 8
k3] k3]
é é 80 [
o o
=2 =2
S S 60 -
40
20 o
0 L 0

3 3
time time

Figure 3: Solution quality versus time for various model®s®&ts using a properly initialized value function (w.ttte
augmented MDP) are shown on the left. Results for a poowirfitnction are shown on the right. In the latter case, the
augmented MDP converges more slowly than the original MDP.

and state spaces for the abstract MDP, as expected. O+— Q-

N e

@) @) [Region
3 Construction and Quality of a Macro Set 0F -0 o
| | | AR

While macros can speed up computation, the question re- o1 @ @ . P:'riphery
mains just how good the resulting policies will be. Inpar- "7 /’ .
ticular, within our hierarchical model, the space of p@ii q e g:’ast:rb'“g

that can be considered is severely restricted. Thus, we wish
to ensure that the macros used admit the “flexibility” of be-
havior needed to discover good policies. The problem is
less pressing for augmented MDPs—since base actions are
available, optimality is assured—nbut still important ifrco
vergence is to be enhanced. (S, A, T, R), and leto : XPer(S;) — R be aseed func-
A primary goal of a macro-selection strategy is to find alo" 1oF 5 - Thelocal MDPM; (7) associated witl§; ando
P Y9 . ay .~ consists of: (a) state spacgUXPer(S;)u{«a}; (b) actions,
small set of good macros, that is, macros that are likely . . . }
) oo dynamics and rewards associated withas in M; (c) a
to produce, when combined, a good approximation of the : . i
optimal solution reward a(s) assomate_d with e_acla € XPer(S;); and (d)
' a single cost-free action applicable at eaghe XPer(S;)
that leads with certainty ta (a cost-free absorbing state).

Figure 4: A Local MDP for Macro Generation

3.1 Macro Generation using Peripheral Values

Suppose we offer the robot in our running example two! he local MDP is depicted graphically in Figure 4. Solving
results in a local policyr; whose behavior is opti-

macros for possible execution in Room 1 of Figure 2, eachMi(‘_f) : .
corresponding to a policy that attempts to leave the room b)r/nal if the seed function reflects the true value of reaching

one of the two exits. We are making an implict assumptionSloeCIfIC exit states.

that one of these two behaviors is desirable, and thus thagtuitively, if we could seed the exit periphery of each lbca
there is no good reason to hang around in that room. W&IDP using a functior within ¢ of the true value function
may prescribe rather different local policies for the roomat these states, we could generate a single macro for each
containing the goal; there is a reason not to leave the regionegion, and “string them together” to obtain an approxi-

This suggests a general way to automatically generatg1ate|y optimal policy. More precisely, we have:

macro actions for regioss;. We want to trade off the re-

wards associated with the statesdnwith the values of Theorem 1 LetIl = {Sy,---, S, } be a decomposition of

leaving the region via some exit state. This tradeoff isMDP M, and letV be the optimal value function fal/ .

naturally modeled and analyzed akeal MDPwhere re- LetA = U{A; : i < n} be a set of macro actions such

wards are attached to states9nand estimatedaluesare that eachA; contains some macre; generated by the

attached to elements of its exit periphery. local MDP M; (0;) where|o;(s) — V(s)| < e forall s €
XPer(S;). If M’ is the abstract MDP induced Wy using

Definition 5 Let S; be a region of MDP M = action setA, andV” is the optimal value function fal/’,

then not be known, but we may know that these values are (ap-
IV'(s) = V(s)] < 2ef8 proximately) the same (e.g., they are equidistant from any
1-5 rewarding or dangerous states). This effectively reduces

for all s € S’ (the abstract state space). Furthermorerif the dimensionality of the required grid. Tighter consttsin
is a lower bound on the completion time of all macros, thenon the value function can reduce the range of values that
need to be tried. Furthermore, in circumstances where no

2e37) g) !

- reward can be obtained within the region, only differences

1-p in therelative valueof exit states impact the local policy:

. this too can reduce the number of macros needed.
Note that more precise error bounds can be found when “ef-

fective” discounting rates are considered for every macrolhe systematic coverage technique can lead to a genera-

[Vi(s) = V(s)| <

transition. tion of a large number of macros per region. Thus, unless
tight constraints are known on the value function, this can
3.2 Construction of Macro Sets involve substantial overhead and, in many instances, be un-

profitable.Heuristicmethods for macro generation can al-
The previous result indicates that knowledge of the (op{eviate this difficulty if they require the construction of a
timal) value function for an MDP can give rise to good small number of macros. One such strategy, suggested by
macros. Of course, such prescience is rare: if we knevsutton et al. [21] for robot navigation problems such as
the value function, we would have no decision problem toour example, involves creating macros for each regipn
solve. However, we often have heuristic knowledge regardthat try to lead the agent out 6f via different exit states.
ing the range of the value function at certain states, or conTo do so requires seeding a local MDP such that one exit
straints on its possible values. It is precisely this type ofstate gets high value and all others get low value. We de-
knowledge that comes into play when one imposes partiascribed experiments with this heuristic technique in thee pr
policies (say, in the form of a control routine). Eveome vious section, but we also addedtay-in-regiormacro that
information can be used to construct a good set of macrokeeps the agent in the region, by seeding all exit states with
that guarantees approximately optimal performance. Wéow values. This technique leads to a setX®er(S;)| + 1
consider several methods for exploiting such knowledge. macros per region.

If one knows therange of the value function, this can be In general, the above heuristic strategy assures that exits
used to construct a set of macros systematically. For inand potential goals within the region will not be overlooked
stance, when constructing macros for Room 1 in Figure 2yhile planning at the abstract level. Note, however, that
suppose our knowledge of the value function is sparse—althis technique does not guarantee that the necessary cover-
we know is that the values of the two exit states lie be-age will be obtained. For example, while implementing a
tweenV,i, andV,a..2 In order to generate a set of macros policy to exit in one way, the agent may find itself actually
for Room 1 that is guaranteed to contain a good macro’slipping” closer to another exit due to uncertainty in its
we can use theoverage techniqueintuitively, for each actions. However, the policy will ensure the agent persists
of the two exit states, we consider values that lie in then its attempt to leave as planned. If both exit states have
range[Viin, Vmax] Spaced somé apart; that is, we con- equal value, forcing the agent to choose one or the other can
sider a grid or mesh coverin®min, Vimax)2- By construct- be far from optimal. Instead, we would like to use a third
ing macros for each lying on a grid point, we are assured macro that takes the agent to thearestexit. However, we

that one suctr is within 16 of the optimal value function cannot discard the original macros unless we kioad-

and that (assuming other regions have “good” macros fronvancethat the values are similar. In addition, unless one ac-
which to choose) close-to-optimal behavior results whercounts for potential variability in the actual value assidn
the abstract MDP is solved. to an exit state, sound decisions to stay within a region or

. . : . leave it cannot be made.
This coverage technique can be extremely expensive: given

such generic knowledge of the value function, we will Finally, we mention the possibility of using iterative refin
generaté(Viax — Vinin)/8)]X e (59! macros per region. ment techniques for macro construction. A simple refine-
However, we can often do much better. First, the numbement strategy uses the value function produced by solv-
of macros is usually smaller than the number of grid pointsng the abstract MDP as seeds for an entirely new set of
covering|Vimin, Vinax]. Thus it is often more appropriate macros. In particular, we choose an initial set of seeds,
to search a local policy space. One technique for doingienerate a single macro per region, then solve the induced
so was suggested recently by Parr [18]. Second, we caabstract MDP. The resulting value functionis used as a seed
apply various forms of domain-specific knowledge. For in-to generate a new set of macros (again one per region),
stance, the values of several exit states for are§iamay and the new abstract MDP is solved. This iterative macro-
refinement method is a special case of asynchronous policy

5Such bounds are easily obtainable using the maximum an . s .
minimum rewards. fteration [2] and is similar to Dantzig-Wolfe (D-W) decom-

position techniques [6, 14]. D-W techniques can be viewed

o -9 -
as iterative schemes for evaluating and modifying macro / f / ___nggi_on_ AN Abstract
: O\ o o ! States
| Vd
P

sets generated by assigning values to peripheral states. o

Base level
States

In general, iterative macro-refinement methods overcome '/ \
the threat of poor initial seeding (and the generation of poo [)
macros) by gradually improving the macro set using infor-

mation as it becomes available. These approaches require

the repeated construction of new macros, which may limit

their applicability. We leave deeper investigation ofater Figure 5: A Hybrid MDP
tive techniques for future work.

easier to solve revised MDPs usingybrid MDP, contain-

4 Multiple MDPs and the Reuse of Macros ing both abstract and base level states.

4.1 Hybrid MDPs Definition 6 LetIl = {S4,---, 5, } be a decomposition of
_ _ _ MDP M = (S, A, T, Ry, and letM’ = (S", A’,T", R') be
As discussed above, generating macro-actions and CORRea apstract MDP induced by and macro seA = {A; :
structing their transition and reward models is an intemsiv ; n}. Let? = (S, A, T, R) be alocal revisionof M
process, requiring explicit state space enumeration. If i regard to regions; ; thatis, T'(s, a,t) = T (s, a, t) and
large number of macros is generated, the overhead asSGr(s a) = R(s,a) forall s ¢ S;. Thehybrid expansion
ciated with this process will outweigh any speed-up pro-y,« _ (S*, A*, T*, R*) of M' by 1 is:
vided by macros during value iteration. Thus our hierar-
chical approach (or any approach requiring macro model
generation) may not be worthwhile as a technique to solve
a single MDP. o A" =U{A; € A:j#i}UA, wherer) € Ajis
The main reason to incur the overhead of macro construc- ~ feasible only at states € EPer(S;), anda € Ais
tion lies in the reuse of macros to solve multiple related feasible only ats;;
MDPs. In our running example, the robot may have con- e T*(s, 7% t) is given by the discounted transition
structed a policy that gets it to the goal consistently, but a I
some point the goal location might change, or the penal- ~ Model forry, foranys ¢ EPer(S;) andt € XPer(S;)
ties associated with other locations may be revised, orper- (7 # 9; T7(s, w5, t) = 0 foranyt ¢ XPer(S;);
haps the environment (or its abilities) changes so thatthe 1%(s,a,t) = T(s,a,t) foranys € 5; andt € S*;
uncertainty associated with its moves at particular loca- . N)
tions increases. Any of these changes requires the solution ® 1 (s, 77) is given by the discounted reward model for
of a new MDP, reflecting a change in reward structure or 7 foranys € S;(j # i), while R*(s,a) = R(s, a)
change in system dynamics. However, the changes to the ~foranys € 5.
MDP are ofterlocal: the reward function and the dynam-
ics remain the same in all but a few regions of state spacelhus the hybrid MDPW *, constructed when the structure
For instance, it may be that the goal location moves withinwithin region.S; changes, consists of the original abstract
Room 3, but no other part of the reward function changes.MDP with the abstract states EPer(.S;) replaced by the
regions; itself. This is depicted graphically in Figure 5.

Local changes in MDP structure can induce global change§v . o . ; .
: ; 2 "We note that this expansion is easily defined for changes in
in the value function (and can induce dramatic qualitative

changes in the optimal behavior). If macros have been gen‘fj}ny number of regions.

erated for a region such that they cover a set of differenWhile there may be substantial overhead in creating
behaviors, they can be applied and reused in solving thesmacros, these can be reused to solve multiple problems,
revised MDPs. However, there is one impediment to thehus amortizing the cost over a number of problem-solving
application of macroactions to revised MDPs, namely, theepisodes. More importantly, the use of hybrid MDPs has
fact that revising an MDP requires that the local informa-considerable advantages when real-time response is re-
tion (rewards or dynamics) for some region must changequired to changing circumstances. Given a new MDP
In our example, the macros for most regions can be reusedy/* that differs from a base MDBR/° in a single region

but those generated for Room 3 do not reflect the revisions; (or, more generally, some small set of regions), this
in reward or transition probabilities described above. Onenew problem can be solved using a hybrid MDP of size
possibility would be to generate new macros for revisedS’| + |S; — EPer(S;)| (recall " is the set of peripheral
regions. However, this could lead to computational ineffi-states, or states in the abstract MDP). For example, if an
ciencies and delays as discussed earlier. Instead, itda oft MDP is partitioned intd: regions of roughly uniform size,

e 5% = Perp(S) U S;;

MAZE 36 MAZE 66 MAZE 121

A disadvantage of the hybrid MDP framework is that one

has to generate and precompute a set of macros, which can
oL e *he SRONED be computationally very costfy. However, if the macro
Ll o ke SOt construction process is performed in advance (off-life$, t
o lls e O delay may be unimportant in relation to the improved abil-
o | Te o [[e[®[®]e ity to solve new problem instances quickly. Alternatively,
L E L B the delay can be justified when the computational cost
could be amortized over multiple problem instances. For

example, based on our test results, the hybrid MDP method

Figure 6: Problems used to test the benefits of macro-reusé! this example would start to dominate (in terms of a total

Circles denote peripheral states assumed by the hybr@_olutiontime,which counts both the delay and time to solve
MDP method. n tasks) after 22, 23, and 24 tasks are solved for Maze 36,

Maze 66, and Maze 121, respectively. Notice that amor-

tization threshold (the number of tasks after which macro
and the average size of the entrance periphery of any reyreparation “pays off”) increases slowly with problem size
gionisp, then a hybrid MDP with one expanded region haseyen though this sequence of problems is such that a more
roughlykp + % states. Without the use of macros and ab-complex maze has roughly double the state space size of
stract/hybrid MDPs, the solution of a new problem requiresits predecessor. This trend seems promising for the appli-
value or policy iteration over the entire state space of sizeation of macros in very large domains with many possible
|S|. Thus a new problem can be solved much more quicklytasks or goals.

The off-line generation of macros can lead to very eI"ficient_I_h hvbrid MDP di . |
on-line solution of new problem instances. € hybri S used In our experiments rely on a set

of heuristically generated macros (see Section 3.2). The
macro set is relatively small and performed very well on
the set of maze navigation problems we tested. This is

To illustrate the potential for speed-up in on-line resgons documented by comparing A_‘EC SCOres, measuring aver-
time for multiple related MDPs using macro actions and@9e expected cost for all peripheral states and for 25 ran-

our hybrid MDP model, we compared response time ofdomly generated gogl tasks. The incr_ease in the C(_)st score
value iteration for both the base level MDP and the hybrid]cor larger pr(_)blems IS caused_ by an increase in dlstam_:es
MDP on three sequences of related problems. We eX(,juﬂqetw_een peripheral and p055|ble_goal states. The practical
ined three robot navigation problems of increasing Com_creatl_on OfQOOd macro sets f_or different types of problems
plexity, shown in Figure 6: Maze 36 with 36 states and 4 re/6Mains an Interesting open Issue.

gions; Maze66 with 66 states and 7 regions; and Maze 121

with 121 states and 11 regions. In each instance, the ub Conclusions

derlying MDP was modified locally by changing the goal,

represented by a zero cost absorbing state (this requirefle have proposed a new hierarchical model for solving
changes to both the dynamics and reward model). MDPs using macro actions. Oabstract MDPallows po-

Table 1 summarizes results obtained for 25 problem in_t_entially dramatig reduc_tions in th? size of state and ac
stances (using different randomly selected goal statek) arf'?n spaces. _Th|s rehqwres comrlr)utment to_(;he zxecunonh
two value iteration methods working with the base level®T Macro actions—they cannot be reconsidered at eac

MDP and the hybrid MDP. A heuristic set of macro-actions stage—thus leading to potentially inflexible, suboptimal
described in Section 3.2, was used for the hybrid MDF’,behavior. We have elaborated conditions and macro con-
. struction techniques that provide guarantees on solution

Value iteration was started using the solution obtained fopuC DA :
the original (locally unmodified) MDP and stopped when gauality. W|_th|n this model, anytime _tradeoffs can be made
fixed precision (0.01 cost units) was achieved. rather_ easily. Furthermore, wittybrid MDPs we have a

technique that allows macros to be reused to solve multiple
The results illustrate that the hybrid MDP model, given MDPs, providing for fast, on-line decision making, and al-
suitable macros, can solve new problem instances mucfowing macro construction costs to be amortized over many
more quickly than resolving the MDP with the original problem solving episodes.

state and action spaces. We also see that the savings oﬁer_?ﬁ ber of . d . h
by the hybrid model are greater for larger problems, exactly €re are a numoer o qu_estlo_ns and open issues t afc re-
ain to be addressed within this framework and many in-

as expected. This is due to the fact that local changes affe{:‘f' ting directi i which thi K be extended. Wi
a significantly smaller proportion of the original model.rFo eresting directions in which this work can be extended. e

a hybrid MDP this means that most of the structure of thehave ignored the question of where partitionings of state

abstract MDP is preserved and only the regions in which e note that approximation techniques can be used to allevi-
the change has occured are elaborated. ate this problem.

4.2 Experimental results

Maze 36 Maze 66 Maze 121
delay [av.time [AEC || delay [av.time | AEC || delay | av.time | AEC
baseMDP || O 1.22 596 | O 2.61 855 || 0 5.94 9.96
hybrid MDP || 5.52 | 0.96 6.01 || 12.62| 2.04 9.73 || 24.47] 4.89 10.72

Table 1: Results obtained by base and hybrid MDP methods carziomly selected goals and three navigation problems.
The delay (in seconds) measures the time spent to prepamawntons, av. time is the average time (in seconds) to
converge to a solution of required precision (0.01), AEC sneas the solution quality, and is computed by averaging

expected cost over all peripheral states and task instances

space come from: apart from handcrafted decompositions[4] T. Dean and R. Givan. Model minimization in Markov de-

one can imagine several strategies for automatic decompo-
sition. However, there are several dimensions along which[S]
partitionings can be compared: larger regions often lead to
smaller peripheries, which result in smaller abstract MDPs 6
(which in turn can be solved more readily), and increase
the odds that a revision of the MDP will be localized to a
small number of regions; smaller regions, in contrast, al- [7]
low macros to be generated more quickly when revisions
are required and often lead to smaller hybrid MDPs (fewer [8]
base states are added to the expanded MDP). These trade-

offs need to be addressed in a systematic fashion.

Other interesting questions surround the use of concisB.0]
MDP representations (e.g., Bayes nets) to form decomposi-

tions and to solve local, abstract and hybrid MDPs. Relate
is the need to concisely represent macros and macro mod

without explicit enumeration of the state space.

The reuse of macros naturally suggests an extension oft
analysis provided here, and the questions posed above,
deal with known distributions over problem instances. If 14
we have information pertaining to the ways in which sys-
tem dynamics and reward functions may be revised, we

cision processe®AAI-97 pp.106-111, Providence, 1997.
T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. ®la
ning under time constraints in stochastic domaif. In-
tell., 76:35-74, 1995.

T. Dean and S.-H. Lin. Decomposition techniques for plan
ning in stochastic domainglCAI-95, pp.1121-1127, Mon-
treal, 1995.

R. Dearden and C. Boutilier. Abstraction and approxienat
decision theoretic plannindrtif. Intell., 89:219-283,1997.
R. Fikes, P. Hart, and N. Nilsson. Learning and executing
generalized robot plangrtif. Intell., 3:251-288, 1972.

9] J. P. Forestier, P. Varaiya. Multilayer control of lafglarkov

chains.IEEE Trans. on Aut. ControR3:298-304, 1978.

M. Hauskrecht. Planning with temporally abstract @wcs.
Technical report, CS-98-01, Brown University, Providence
1998.

] R. A. Howard. Dynamic Programming and Markov Pro-
cessesMIT Press, 1960.

L. Pack Kaelbling. Hierarchical reinforcement leargi
Preliminary resultsICML-93, pp.167-173, Amherst, 1993.
R. Korf. Macro-operators: A weak method for learning.
Artif. Intell., 26:35-77, 1985.

] H. J. Kushner and C.-H. Chen. Decomposition of systems

governed by Markov chaindEEE Trans. Automatic Con-
trol, 19(5):501-507, 1974.

would like to exploit it in forming our decomposition of [15] J. E. Laird, A. Newell, P. S. Rosenbloom. SOAR: An archi-

state space and the macros one provides.

Acknowledgements

We would like to thank Ronald Parr for a motivating discussio

on macro-actions and for pointing out additional referendéis

work was supported in part by DARPA/Rome Labs Planning Ini- [18]
tiative grant F30602-95-1-0020 and in parts by NSF grants IR
9453383 and IRI-9312395. Craig Boutilier was supported by[lg]
NSERC Research Grant OGP0121843 and IRIS-II Project IC-7,

and this work was undertaken while the author was visitingBr
University. Thanks also to the generous support of the Killa
Foundation.

References

[1] R. E. Bellman. Dynamic ProgrammingPrinceton Univer-
sity Press, Princeton, 1957.

[2] D. P. Bertsekas and J.. N. Tsitsiklis?Neuro-dynamic Pro-
gramming Athena, 1996.

2
[3] C. Bouitilier, R. Dearden, and M. Goldszmidt. Exploiting [

structure in policy constructionlJCAI-95 pp.1104-1111,
Montreal, 1995.

tecture for general intelligencéurt. Intell., 33:1-64, 1987.

S. Minton. Selectively generalizing plans for problsoiv-
ing. IJCAI-85, pp.596-599, Boston, 1985.

R. Parr and S. Russell. Reinforcement learning with-hie
archies of machines. In M. Mozer, M. Jordan, T. Petsche,
eds.NIPS-11 MIT Press, 1998.

R. Parr. Flexible Decomposition Algorithms for Weakly
Coupled Markov Decision Processes. In this proceedings,
1998.

R. Parr. Hierarchical control and learning with hietaies

of machines. Chapters 1-3, under preparation, 1998.

D. Precup and R. S. Sutton. Multi-time models for tem-
porally abstract planning. In M. Mozer, M. Jordan, and T.
Petsche, edsNIPS-11 MIT Press, 1998.

D. Precup, R. S. Sutton, and S. Singh. Theoretical tesul
reinforcement learning with temporally abstract behauior
10th Eur. Conf. Mach. LearnChemnitz, 1998.

M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programmin@/iley, 1994.

R. S. Sutton. TD models: Modeling the world at a mixture
of time scales. IRCML-95, pp.531-539, Lake Tahoe, 1995.
S. Thrun and A. Schwartz. Finding structure in reinésrc
ment learning. In G. Tesauro, D. Touretzky, and T. Leen,
eds.NIPS-7 pp.385-392, MIT Press, 1995.

