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Conclusion and acknowledgements
• We developed an approach for retrieving samples that capture different user 

perceptions of the same image across modalities.

• We combine our style constraints with standard content constraints.

• Learning jointly gaze, captions and personality is better than learning in isolation.

• We are grateful for NSF CRII award 1566270, Google Faculty Research Awards.

Evaluation (cont’d)

Qualitative results
We show how distinct the samples provided by different users are, and how

consistent the differences between users are with user personality from surveys.

• Previously, we train three task-specific networks (e.g. one for t2g/g2t).

• We next train jointly for gaze, text, personality, and see benefit for most tasks.

my

family deserves it.

it is a family

friendly vacation spot

appropriate companionship.

sexier person

deserve

goes along with

I enjoy

allow you to be

creative.

Cross-modality dataset

• We collect caption and gaze data, along with responses to personality surveys,

for images in two datasets (Ads and COCO) using Amazon Mechanical Turk.

• We collect more than 4,000 annotations, 900 unique images and 270 tasks.

• To ensure quality, we use validation images where it is clear where a gaze

map should reasonably be located (e.g. objects on plain background).

Motivation

Overview

• Existing methods annotate images

using only image pixels.

However, our perception is

affected by our personality,

experience, and bias.

• Thus, learning jointly gaze,

personality and image captioning

can be beneficial.

Related work

• We model the relationship between two channels affected by personality

(gaze and captions). In contrast, prior work only considers relationships

between captions and personality (Park et al. 2017, Veit et al. 2018) or gaze

and personality/sentiment (Fan et al. 2018, Xu et al. 2017).

• A variant of our method exploits privileged information at training time.

Approach
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Evaluation
Our method combines base, content, and style constraints. We compare Ours with

four different baselines using top-3 accuracy:

• Base (metric learning, Faghri et al. BMVC 2018).

• Content and Style are components of our method.

• Veit et al. CVPR 2018 (matrix factorization).
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• Our random split setup shows higher performance. In Ads, g2p performance is

0.2375 compared to 0.2051; and g2t performance is 0.6519 vs 0.4463.

User split setup
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L = max(d(a,p)-d(a,n)+margin,0)
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• Our dataset is available on: www.cs.pitt.edu/~nineil/crossmod/

• We develop a model for cross-modality personalized retrieval.

• Our method combines content and style constraints. Content encourages

similarity of the samples (e.g. captions) provided on the same image. In

contrast, style encourages similarity of the samples from the same user.

• Our approach outperforms three different baselines on two datasets. 
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